Model Problems

The following model problems are available and are dispatched via the following types.

ExtendableASGFEM.PoissonProblemPrimalType
abstract type PoissonProblemPrimal <: ExtendableASGFEM.AbstractModelProblem

Poisson problem with linear stochastic coefficient $a$ that seeks $u$ such that

$-\mathrm{div}(a(y,x) \nabla u(y,x)) = f(x) \quad \text{for } (y,x) \in \Gamma \times D$

source
ExtendableASGFEM.LogTransformedPoissonProblemPrimalType
abstract type LogTransformedPoissonProblemPrimal <: ExtendableASGFEM.AbstractModelProblem

Poisson problem with exponential stochastic coefficient $e^a$ that seeks $u$ such that

$-\mathrm{div}(e^a(y,x) \nabla u(y,x)) = f(x) \quad \text{for } (y,x) \in \Gamma \times D$

The stochastic Galerkin FEM solves the equivalent transformed problem

$-\mathrm{div}(\nabla u(y,x)) - \nabla a(y,x) \cdot \nabla u(y,x) = e^{-a(y,x)} f(x) \quad \text{for } (y,x) \in \Gamma \times D$

source
ExtendableASGFEM.LogTransformedPoissonProblemDualType
abstract type LogTransformedPoissonProblemDual <: ExtendableASGFEM.AbstractModelProblem

Poisson problem with exponential stochastic coefficient $e^a$ that seeks $u$ such that

$-\mathrm{div}(e^a(y,x) \nabla u(y,x)) = f(x) \quad \text{for } (y,x) \in \Gamma \times D$

The dual formulation of the log-transformed formulation of the Poisson problem introduces the auxiliary stress variable $p := - e^a(y,x) \nabla u(y,x) = -∇ũ - ∇aũ$ for the transformed $ũ := e^{-a} u$.

Its weak formulation seeks $(p,ũ)$ such that

\[\begin{aligned} (p, q) + (ũ \nabla a, q) - (\mathrm{div}(q), ũ) & = 0 \quad \text{for all } q \\ -(\mathrm{div}(p), v) & = (f, v) \quad \text{for all } v \end{aligned}\]

source