begin
    using ExtendableFEMBase
    using ExtendableGrids
    using ExtendableSparse
    using GridVisualize
    using PlutoVista
    GridVisualize.default_plotter!(PlutoVista)
end
PlutoVista

Tutorial notebook: Poisson problem

This notebook demonstrates how to implement the Poisson problem with the low level structures provided by ExtendableFEMBase. The Poisson problem with homogeneous Dirichlet boundary data seeks \(u\) such that

$$\begin{aligned} - \mu \Delta u = f. \end{aligned}$$

The weak formulation seeks \(u \in V := H^1_0(\Omega)\) such that

$$\begin{aligned} \mu (\nabla u, \nabla v) = (f, v) \quad \text{for all } v \in V \end{aligned}$$

begin
    ## PDE data
    μ = 1.0
    f = x -> x[1] - x[2]

    ## discretization parameters
    nref = 9
    order = 1
end
1
tricontour(xgrid[Coordinates],xgrid[CellNodes],sol.entries[1:num_nodes(xgrid)]; levels = 5, resolution = (500,500))
begin
    ## call low level solver
    sol = solve_poisson_lowlevel(FES, μ, f)
end
FEVector information
====================
   block  |  ndofs 	|     min  /  max    	| FEType 		 (name/tag)
 [    1]  |  263169	| -1.21e-02/1.21e-02  	| H1Pk{1,2,1}  	 (#1)
function solve_poisson_lowlevel(FES, μ, f)
    
    Solution = FEVector(FES)
    FES = Solution[1].FES
    A = FEMatrix(FES, FES)
    b = FEVector(FES)
    println("Assembling operators...")
    @time assemble!(A.entries, b.entries, FES, f, μ)

    ## fix boundary dofs
    println("Assembling boundary data...")
    @time begin
        BFaceDofs::Adjacency{Int32} = FES[ExtendableFEMBase.BFaceDofs]
        nbfaces::Int = num_sources(BFaceDofs)
        AM::ExtendableSparseMatrix{Float64,Int64} = A.entries
        dof_j::Int = 0
        for bface = 1 : nbfaces
            for j = 1 : num_targets(BFaceDofs,1)
                dof_j = BFaceDofs[j, bface]
                AM[dof_j,dof_j] = 1e60
                b.entries[dof_j] = 0
            end
        end
    end
    ExtendableSparse.flush!(A.entries)

    ## solve
    println("Solving linear system...")
    @time copyto!(Solution.entries, A.entries \ b.entries)

    return Solution
end
solve_poisson_lowlevel (generic function with 1 method)
begin
    ## create finite element space
    FEType = H1Pk{1,2,order}

    ## prepare finite element space and dofmaps
    println("Creating FESpace...")
    @time FES = FESpace{FEType}(xgrid)
    FES
end
FESpace information
===================
     name = H1Pk{1,2,1}
   FEType = H1Pk{1,2,1}
  FEClass = ExtendableFEMBase.AbstractH1FiniteElement
    ndofs = 263169


DofMaps
==========
begin
    ## create grid
    X = LinRange(0,1,2^nref+1)
    Y = LinRange(0,1,2^nref+1)
    println("Creating grid...")
    @time xgrid = simplexgrid(X,Y)
    println("Preparing FaceNodes...")
    @time xgrid[FaceNodes]
    println("Preparing CellVolumes...")
    @time xgrid[CellVolumes]
    xgrid
end
ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 2 nodes: 263169 cells: 524288 bfaces: 2048
function assemble!(A::ExtendableSparseMatrix, b::Vector, FES, f, μ = 1)

    xgrid = FES.xgrid
    EG = xgrid[UniqueCellGeometries][1]
    FEType = eltype(FES)
    L2G = L2GTransformer(EG, xgrid, ON_CELLS)

    ## dofmap
    CellDofs = FES[ExtendableFEMBase.CellDofs]
    
    ## quadrature formula
    qf = QuadratureRule{Float64, EG}(2*(get_polynomialorder(FEType, EG)-1))
    weights::Vector{Float64} = qf.w
    xref::Vector{Vector{Float64}} = qf.xref
    nweights::Int = length(weights)
    
    ## FE basis evaluator
    FEBasis_∇ = FEEvaluator(FES, Gradient, qf)
    ∇vals = FEBasis_∇.cvals
    FEBasis_id = FEEvaluator(FES, Identity, qf)
    idvals = FEBasis_id.cvals

    
    cellvolumes = xgrid[CellVolumes]
   
    ## ASSEMBLY LOOP
    function barrier(EG, L2G::L2GTransformer)
        ## barrier function to avoid allocations by EG dispatch
        
    	ndofs4cell::Int = get_ndofs(ON_CELLS, FEType, EG)
    	Aloc = zeros(Float64, ndofs4cell, ndofs4cell)
        ncells::Int = num_cells(xgrid)
    	dof_j::Int, dof_k::Int = 0, 0
        x::Vector{Float64} = zeros(Float64, 2)
        
        for cell = 1 : ncells
            ## update FE basis evaluators
            FEBasis_∇.citem[] = cell
            update_basis!(FEBasis_∇) 
    
            ## assemble local stiffness matrix
            for j = 1 : ndofs4cell, k = j : ndofs4cell
                temp = 0
                for qp = 1 : nweights
                    temp += weights[qp] * dot(view(∇vals,:,j,qp), view(∇vals,:,k,qp))
                end
                Aloc[j,k] = temp
            end
            Aloc .*= μ * cellvolumes[cell]
    
            ## add local matrix to global matrix
            for j = 1 : ndofs4cell
                dof_j = CellDofs[j, cell]
                for k = j : ndofs4cell
                    dof_k = CellDofs[k, cell]
                    if abs(Aloc[j,k]) > 1e-15
                        # write into sparse matrix, only lines with allocations
                        rawupdateindex!(A, +, Aloc[j,k], dof_j, dof_k) 
                        if k > j
                            rawupdateindex!(A, +, Aloc[j,k], dof_k, dof_j)
                        end
                    end
                end
            end
            fill!(Aloc, 0)

            ## assemble right-hand side
            update_trafo!(L2G, cell)
            for j = 1 : ndofs4cell
                ## right-hand side
                temp = 0
                for qp = 1 : nweights
                    ## get global x for quadrature point
                    eval_trafo!(x, L2G, xref[qp])
                    ## evaluate (f(x), v_j(x))
                    temp += weights[qp] * idvals[1, j, qp] * f(x)
                end
                ## write into global vector
                dof_j = CellDofs[j, cell]
                b[dof_j] += temp * cellvolumes[cell]
            end
        end
    end
    barrier(EG, L2G)
    flush!(A)
end
assemble! (generic function with 2 methods)

Built with Julia 1.11.1 and

ExtendableFEMBase 0.8.0
ExtendableGrids 1.10.4
ExtendableSparse 1.5.3
GridVisualize 1.8.1
PlutoVista 1.0.1