VoronoiFVM.jl

Build status DOI Zulip Chat

Solver for coupled nonlinear partial differential equations (elliptic-parabolic conservation laws) based on the Voronoi finite volume method. It uses automatic differentiation via ForwardDiff.jl and DiffResults.jl to evaluate user functions along with their jacobians and calculate derivatives of solutions with respect to their parameters.

JuliaCon 2024 Lightning Talk: abstract, video

Recent changes

Please look up the list of recent changes

Accompanying packages

VoronoiFVM.jl and most of these packages are part of the meta package PDELib.jl.

Some alternatives

Some projects and packages using VoronoiFVM.jl

Citation

If you use this package in your work, please cite it according to CITATION.cff.

Papers and preprints using this package

Please consider a pull request updating CITATION.bib if you have published work which could be added to this list.

[1]
D. Brust, M. Wullenkord, H. G. Gómez, J. Albero and C. Sattler. Experimental Investigation of Photo-Thermal Catalytic Reactor for the Reverse Water Gas Shift Reaction under Concentrated Irradiation. Journal of Environmental Chemical Engineering, 113372 (2024).
[2]
[3]
D. Brust, K. Hopf, J. Fuhrmann, A. Cheilytko, M. Wullenkord and C. Sattler. Transport of Heat and Mass for Reactive Gas Mixtures in Porous Media: Modeling and Application (SSRN, 2024).
[4]
M. U. Qureshi, S. Matera, D. Runge, C. Merdon, J. Fuhrmann, J.-U. Repke and G. Brösigke. Reduced Order Cfd Modeling Approach Based on the Asymptotic Expansion-An Application for Heterogeneous Catalytic Systems (SSRN, 2024).
[5]
T. Belin, P. Lafitte-Godillon, V. Lescarret, J. Fuhrmann and C. Mascia. Entropy solutions of a diffusion equation with discontinuous hysteresis and their finite volume approximation (HAL, 2024).
[6]
S. Matera, C. Merdon and D. Runge. Reduced Basis Approach for Convection-Diffusion Equations with Non-linear Boundary Reaction Conditions. In: International Conference on Finite Volumes for Complex Applications (Springer, 2023); pp. 335–343.
[7]
B. Spetzler, D. Abdel, F. Schwierz, M. Ziegler and P. Farrell. The Role of Vacancy Dynamics in Two-Dimensional Memristive Devices. Advanced Electronic Materials, 2300635 (2023).
[8]
S. Scholz and L. Berger. Hestia.jl: A Julia Library for Heat Conduction Modeling with Boundary Actuation. Simul. Notes Eur. 33, 27–30 (2023).
[9]
R. P. Schärer and J. Schumacher. A Transient Non-isothermal Cell Performance Model for Organic Redox Flow Batteries. In: 19th Symposium on Modeling and Experimental Validation of Electrochemical Energy Technologies (ModVal), Duisburg, Germany, 21-23 March 2023 (2023).
[10]
J. Fuhrmann, B. Gaudeul and C. Keller. Two Entropic Finite Volume Schemes for a Nernst–Planck–Poisson System with Ion Volume Constraints. In: International Conference on Finite Volumes for Complex Applications (Springer, 2023); pp. 285–294.
[11]
P. Vágner, M. Pavelka, J. Fuhrmann and V. Klika. A multiscale thermodynamic generalization of Maxwell-Stefan diffusion equations and of the dusty gas model. International Journal of Heat and Mass Transfer 199, 123405 (2022).
[12]
V. Miloš, P. Vágner, D. Budáč, M. Carda, M. Paidar, J. Fuhrmann and K. Bouzek. Generalized Poisson-Nernst-Planck-based physical model of an O2 | LSM | YSZ electrode. Journal of the Electrochemical Society, 044505 (2022).
[13]
L. Xiao, G. Mei, N. Xi and F. Piccialli. Julia language in computational mechanics: A new competitor. Archives of Computational Methods in Engineering 29, 1713–1726 (2022).
[14]
B. Gaudeul and J. Fuhrmann. Entropy and convergence analysis for two finite volume schemes for a Nernst–Planck–Poisson system with ion volume constraints. Numerische Mathematik 151, 99–149 (2022).
[15]
J. R. Martins, F. Alves and P. M. Ferreira. From Semiconductor to Transistor-Level: Modeling, Simulation, and Layout Rendering Tools. In: Colloque du GdR SOC2 (2022), hal-03690082.
[16]
J. Jambrich. Consistent non-equilibrium thermodynamic modeling of hydrogen fuel cells. Master's thesis, Univerzita Karlova, Matematicko-fyzikálnı́ fakulta (2022).
[17]
S. B. Chinnery. TCAD-Informed Surrogate Models of Semiconductor Devices. Master's thesis, Massachusetts Institute of Technology (2022).
[18]
D. Abdel, P. Vágner, J. Fuhrmann and P. Farrell. Modelling charge transport in perovskite solar cells: Potential-based and limiting ion depletion. Electrochimica Acta 390, 138696 (2021).
[19]
D. Abdel, P. Farrell and J. Fuhrmann. Assessing the quality of the excess chemical potential flux scheme for degenerate semiconductor device simulation. Optical and Quantum Electronics 53, 1–10 (2021).
[20]
C. Cancès, C. Chainais-Hillairet, J. Fuhrmann and B. Gaudeul. A numerical-analysis-focused comparison of several finite volume schemes for a unipolar degenerate drift-diffusion model. IMA Journal of Numerical Analysis 41, 271–314 (2021).
[21]
J. Park, J. H. Cho and R. D. Braatz. Mathematical modeling and analysis of microwave-assisted freeze-drying in biopharmaceutical applications. Computers & Chemical Engineering 153, 107412 (2021).
[22]
C. Cancès, C. C. Hillairet, J. Fuhrmann and B. Gaudeul. On four numerical schemes for a unipolar degenerate drift-diffusion model. In: Finite Volumes for Complex Applications IX-Methods, Theoretical Aspects, Examples: FVCA 9, Bergen, Norway, June 2020 IX (Springer, 2020); pp. 163–171.