215: 2D Nonlinear Poisson with boundary reaction
module Example215_NonlinearPoisson2D_BoundaryReaction
using Printf
using VoronoiFVM
using ExtendableGrids
using GridVisualize
using ExtendableSparse
function main(; n = 10, Plotter = nothing, verbose = false, unknown_storage = :sparse, assembly = :edgewise,
tend = 100)
h = 1.0 / convert(Float64, n)
X = collect(0.0:h:1.0)
Y = collect(0.0:h:1.0)
grid = simplexgrid(X, Y)
eps = 1.0e-2
physics = VoronoiFVM.Physics(; breaction = function (f, u, node, data)
if node.region == 2
f[1] = 1 * (u[1] - u[2])
f[2] = 1 * (u[2] - u[1])
else
f[1] = 0
f[2] = 0
end
end, flux = function (f, u, edge, data)
f[1] = eps * (u[1, 1] - u[1, 2])
f[2] = eps * (u[2, 1] - u[2, 2])
end, storage = function (f, u, node, data)
f[1] = u[1]
f[2] = u[2]
end)
sys = VoronoiFVM.System(grid, physics; unknown_storage = unknown_storage, assembly = assembly)
enable_species!(sys, 1, [1])
enable_species!(sys, 2, [1])
inival = unknowns(sys)
inival[1, :] .= map((x, y) -> exp(-5.0 * ((x - 0.5)^2 + (y - 0.5)^2)), grid)
inival[2, :] .= 0
control = VoronoiFVM.NewtonControl()
control.verbose = verbose
control.reltol_linear = 1.0e-5
tstep = 0.01
time = 0.0
istep = 0
u25 = 0
p = GridVisualizer(; Plotter = Plotter, layout = (2, 1))
while time < tend
time = time + tstep
U = solve(sys; inival, control, tstep)
inival .= U
if verbose
@printf("time=%g\n", time)
end
I = integrate(sys, physics.storage, U)
Uall = sum(I)
tstep *= 1.2
istep = istep + 1
u25 = U[25]
scalarplot!(p[1, 1], grid, U[1, :];
title = @sprintf("U1: %.3g U1+U2:%8.3g", I[1, 1], Uall),
flimits = (0, 1))
scalarplot!(p[2, 1], grid, U[2, :]; title = @sprintf("U2: %.3g", I[2, 1]),
flimits = (0, 1))
reveal(p)
end
return u25
end
using Test
function runtests()
testval = 0.2760603343272377
@test main(; unknown_storage = :dense, assembly = :edgewise) ≈ testval &&
main(; unknown_storage = :sparse, assembly = :cellwise) ≈ testval &&
main(; unknown_storage = :dense, assembly = :cellwise) ≈ testval
end
end
This page was generated using Literate.jl.