001: New linear solver API
module Example001_Solvers
# under development
using Printf
using VoronoiFVM
using ExtendableGrids
using GridVisualize
using LinearSolve
using ExtendableSparse
using AMGCLWrap
using AlgebraicMultigrid
using LinearAlgebra
using Test
function main(; n = 10, Plotter = nothing, assembly = :edgwwise, kwargs...)
h = 1.0 / convert(Float64, n)
X = collect(0.0:h:1.0)
Y = collect(0.0:h:1.0)
grid = simplexgrid(X, Y)
nn = num_nodes(grid)
eps = 1.0e-2
function reaction(f, u, node, data)
f[1] = u[1]^2
return nothing
end
function flux(f, u, edge, data)
f[1] = eps * (u[1, 1]^2 - u[1, 2]^2)
return nothing
end
function source(f, node, data)
x1 = node[1] - 0.5
x2 = node[2] - 0.5
f[1] = exp(-20.0 * (x1^2 + x2^2))
return nothing
end
function storage(f, u, node, data)
f[1] = u[1]
return nothing
end
function bcondition(f, u, node, data)
boundary_dirichlet!(
f,
u,
node;
species = 1,
region = 2,
value = ramp(node.time; dt = (0, 0.1), du = (0, 1))
)
boundary_dirichlet!(
f,
u,
node;
species = 1,
region = 4,
value = ramp(node.time; dt = (0, 0.1), du = (0, 1))
)
return nothing
end
sys = VoronoiFVM.System(
grid; reaction, flux, source, storage, bcondition, assembly,
species = [1]
)
@info "UMFPACK:"
umf_sol = solve(sys; inival = 0.5, method_linear = UMFPACKFactorization(), kwargs...)
@info "KLU:"
sol = solve(sys; inival = 0.5, method_linear = KLUFactorization(), kwargs...)
@test norm(sol - umf_sol, Inf) < 1.0e-7
@info "Sparspak:"
sol = solve(sys; inival = 0.5, method_linear = SparspakFactorization(), kwargs...)
@test norm(sol - umf_sol, Inf) < 1.0e-7
@info "Krylov-ilu0:"
sol = solve(
sys;
inival = 0.5,
method_linear = KrylovJL_BICGSTAB(),
precon_linear = ILUZeroPreconditioner(),
kwargs...
)
@test norm(sol - umf_sol, Inf) < 1.0e-7
@info "Krylov-block1"
sol = solve(
sys;
inival = 0.5,
method_linear = KrylovJL_BICGSTAB(),
precon_linear = BlockPreconditioner(;
partitioning = [1:(nn ÷ 2), (nn ÷ 2 + 1):nn],
factorization = ILU0Preconditioner()
),
kwargs...
)
@test norm(sol - umf_sol, Inf) < 1.0e-7
@info "Krylov-block2"
sol = solve(
sys;
inival = 0.5,
method_linear = KrylovJL_BICGSTAB(),
precon_linear = BlockPreconditioner(;
partitioning = [1:2:nn, 2:2:nn],
factorization = UMFPACKFactorization()
),
kwargs...
)
@test norm(sol - umf_sol, Inf) < 1.0e-7
@info "Krylov - delayed factorization:"
sol = solve(
sys;
inival = 0.5,
method_linear = KrylovJL_BICGSTAB(),
precon_linear = SparspakFactorization(),
keepcurrent_linear = false,
kwargs...
)
@test norm(sol - umf_sol, Inf) < 1.0e-7
@info "Krylov - jacobi:"
sol = solve(
sys;
inival = 0.5,
method_linear = KrylovJL_BICGSTAB(),
precon_linear = JacobiPreconditioner(),
keepcurrent_linear = true,
kwargs...
)
@test norm(sol - umf_sol, Inf) < 1.0e-7
@info "Krylov - SA_AMG:"
sol = solve(
sys;
inival = 0.5,
method_linear = KrylovJL_BICGSTAB(),
precon_linear = SA_AMGPreconditioner(),
keepcurrent_linear = true,
kwargs...
)
@test norm(sol - umf_sol, Inf) < 1.0e-7
@info "Krylov - AMGCL_AMG:"
sol = solve(
sys;
inival = 0.5,
method_linear = KrylovJL_BICGSTAB(),
precon_linear = AMGCL_AMGPreconditioner(),
keepcurrent_linear = true,
kwargs...
)
return @test norm(sol - umf_sol, Inf) < 1.0e-7
end
function runtests()
@testset "edgewise" begin
main(; assembly = :edgewise)
end
@testset "cellwise" begin
main(; assembly = :cellwise)
end
return nothing
end
end
This page was generated using Literate.jl.