103: 1D Convection-diffusion equation
Solve the equation
\[\partial_t u -\nabla ( D \nabla u - v u) = 0\]
in $\Omega=(0,1)$ with homogeneous Neumann boundary condition at $x=0$ and outflow boundary condition at $x=1$.
module Example103_ConvectionDiffusion1D
using Printf
using VoronoiFVM
using ExtendableGrids
using GridVisualize
# Bernoulli function used in the exponential fitting discretization
function bernoulli(x)
if abs(x) < nextfloat(eps(typeof(x)))
return 1
end
return x / (exp(x) - 1)
end
function exponential_flux!(f, u, edge, data)
vh = project(edge, data.v)
Bplus = data.D * bernoulli(vh / data.D)
Bminus = data.D * bernoulli(-vh / data.D)
f[1] = Bminus * u[1, 1] - Bplus * u[1, 2]
return nothing
end
function outflow!(f, u, node, data)
if node.region == 2
f[1] = data.v[1] * u[1]
end
return nothing
end
function main(; n = 10, Plotter = nothing, D = 0.01, v = 1.0, tend = 100)
# Create a one-dimensional discretization
h = 1.0 / n
grid = simplexgrid(0:h:1)
data = (v = [v], D = D)
sys = VoronoiFVM.System(
grid,
VoronoiFVM.Physics(;
flux = exponential_flux!, data = data,
breaction = outflow!
)
)
# Add species 1 to region 1
enable_species!(sys, 1, [1])
# Set boundary conditions
boundary_neumann!(sys, 1, 1, 0.0)
# Create a solution array
inival = unknowns(sys)
inival[1, :] .= map(x -> 1 - 2x, grid)
# Transient solution of the problem
control = VoronoiFVM.NewtonControl()
control.Δt = 0.01 * h
control.Δt_min = 0.01 * h
control.Δt_max = 0.1 * tend
tsol = solve(sys; inival, times = [0, tend], control)
vis = GridVisualizer(; Plotter = Plotter)
for i in 1:length(tsol.t)
scalarplot!(
vis[1, 1], grid, tsol[1, :, i]; flimits = (0, 1),
title = "t=$(tsol.t[i])", show = true
)
sleep(0.01)
end
return tsol
end
using Test
function runtests()
tsol = main()
@test maximum(tsol) <= 1.0 && maximum(tsol.u[end]) < 1.0e-20
return nothing
end
end
This page was generated using Literate.jl.