105: 1D Nonlinear Poisson equation

(source code)

Solve the nonlinear Poisson equation

\[-\nabla \varepsilon \nabla u + e^{u}-e^{-u} = f\]

in $\Omega=(0,1)$ with boundary condition $u(0)=0$ and $u(1)=1$ with

\[f(x)= \begin{cases} 1&,x>0.5\\ -1&, x<0.5 \end{cases}.\]

This stationary problem is an example of a nonlinear Poisson equation or Poisson-Boltzmann equation. Such equation occur e.g. in simulations of electrochemical systems and semiconductor devices.

module Example105_NonlinearPoisson1D
using Printf
using VoronoiFVM
using ExtendableGrids
using GridVisualize

function main(; n = 10, Plotter = nothing, verbose = false, unknown_storage = :sparse, assembly = :edgewise)

    # Create a one-dimensional discretization
    h = 1.0 / convert(Float64, n)
    grid = simplexgrid(collect(0:h:1))

    # A parameter which is "passed" to the flux function via scope
    ϵ = 1.0e-3

    # Flux function which describes the flux
    # between neighboring control volumes
    function flux!(f, u, edge, data)
        f[1] = ϵ * (u[1, 1] - u[1, 2])
        return nothing
    end

    # Source term
    function source!(f, node, data)
        if node[1] <= 0.5
            f[1] = 1
        else
            f[1] = -1
        end
        return nothing
    end

    # Reaction term
    function reaction!(f, u, node, data)
        f[1] = exp(u[1]) - exp(-u[1])
        return nothing
    end

    # Create a physics structure
    physics = VoronoiFVM.Physics(;
        flux = flux!,
        source = source!,
        reaction = reaction!
    )

    # Create a finite volume system - either
    # in the dense or  the sparse version.
    # The difference is in the way the solution object
    # is stored - as dense or as sparse matrix

    sys = VoronoiFVM.System(grid, physics; unknown_storage = unknown_storage, assembly = assembly)

    # Add species 1 to region 1
    enable_species!(sys, 1, [1])

    # Set boundary conditions
    boundary_dirichlet!(sys, 1, 1, 0.0)
    boundary_dirichlet!(sys, 1, 2, 1.0)

    # Create a solution array
    inival = unknowns(sys; inival = 0.5)

    # Stationary solution of the problem
    solution = solve(sys; inival, verbose)

    scalarplot(grid, solution[1, :]; title = "Nonlinear Poisson", Plotter = Plotter)

    return sum(solution)
end

using Test
function runtests()
    testval = 1.5247901344230088
    @test main(; unknown_storage = :sparse, assembly = :edgewise) ≈ testval &&
        main(; unknown_storage = :dense, assembly = :edgewise) ≈ testval &&
        main(; unknown_storage = :sparse, assembly = :cellwise) ≈ testval &&
        main(; unknown_storage = :dense, assembly = :cellwise) ≈ testval
    return nothing
end

end

This page was generated using Literate.jl.