107: 1D Nonlinear Storage
This equation comes from the transformation of the nonlinear diffuision equation.
\[\partial_t u^\frac{1}{m} -\Delta u = 0\]
in $\Omega=(-1,1)$ with homogeneous Neumann boundary conditions. We can derive an exact solution from the Barenblatt solution of the previous example.
module Example107_NonlinearStorage1D
using Printf
using VoronoiFVM
using ExtendableGrids
using GridVisualize
function barenblatt(x, t, m)
tx = t^(-1.0 / (m + 1.0))
xx = x * tx
xx = xx * xx
xx = 1 - xx * (m - 1) / (2.0 * m * (m + 1))
if xx < 0.0
xx = 0.0
end
return tx * xx^(1.0 / (m - 1.0))
end
function main(;
n = 20, m = 2.0, Plotter = nothing, verbose = false,
unknown_storage = :sparse, tend = 0.01, tstep = 0.0001, assembly = :edgewise
)
# Create a one-dimensional discretization
h = 1.0 / convert(Float64, n / 2)
X = collect(-1:h:1)
grid = simplexgrid(X)
# Flux function which describes the flux
# between neighboring control volumes
function flux!(f, u, edge, data)
f[1] = u[1, 1] - u[1, 2]
return nothing
end
ϵ = 1.0e-10
# Storage term
# This needs to be regularized as its derivative
# at 0 is infinity
function storage!(f, u, node, data)
f[1] = (ϵ + u[1])^(1.0 / m)
return nothing
end
# Create a physics structure
physics = VoronoiFVM.Physics(;
flux = flux!,
storage = storage!
)
# Create a finite volume system - either
# in the dense or the sparse version.
# The difference is in the way the solution object
# is stored - as dense or as sparse matrix
sys = VoronoiFVM.System(grid, physics; unknown_storage = unknown_storage, assembly = assembly)
# Add species 1 to region 1
enable_species!(sys, 1, [1])
# Create a solution array
inival = unknowns(sys)
solution = unknowns(sys)
t0 = 0.001
# Broadcast the initial value
inival[1, :] .= map(x -> barenblatt(x, t0, m)^m, X)
# Create solver control info
control = VoronoiFVM.NewtonControl()
control.verbose = verbose
control.Δu_opt = 0.1
control.force_first_step = true
tsol = solve(sys; inival, times = [t0, tend], control)
if Plotter != nothing
p = GridVisualizer(; Plotter = Plotter, layout = (1, 1), fast = true)
for i in 1:length(tsol)
time = tsol.t[i]
scalarplot!(
p[1, 1], grid, tsol[1, :, i]; title = @sprintf("t=%.3g", time),
color = :red, label = "numerical"
)
scalarplot!(
p[1, 1], grid, map(x -> barenblatt(x, time, m)^m, grid); clear = false,
color = :green, label = "exact"
)
reveal(p)
sleep(1.0e-2)
end
end
return sum(tsol.u[end])
end
using Test
function runtests()
testval = 174.72418935404414
@test main(; unknown_storage = :sparse, assembly = :edgewise) ≈ testval rtol = 1.0e-5
@test main(; unknown_storage = :dense, assembly = :edgewise) ≈ testval rtol = 1.0e-5
@test main(; unknown_storage = :sparse, assembly = :cellwise) ≈ testval rtol = 1.0e-5
@test main(; unknown_storage = :dense, assembly = :cellwise) ≈ testval rtol = 1.0e-5
return nothing
end
end
This page was generated using Literate.jl.