110: 1D Reaction Diffusion equation with two species

(source code)

Solve the nonlinear coupled reaction diffusion problem

\[-\nabla (0.01+2u_2)\nabla u_1 + u_1u_2= 0.0001(0.01+x)\]

\[-\nabla (0.01+2u_1)\nabla u_2 - u_1u_2 = 0.0001(1.01-x)\]

in $\Omega=(0,1)$ with boundary condition $u_1(0)=1$, $u_2(0)=0$ and $u_1(1)=1$, $u_2(1)=1$.

module Example110_ReactionDiffusion1D_TwoSpecies

using Printf
using VoronoiFVM
using ExtendableGrids
using GridVisualize

function main(; n = 100, Plotter = nothing, verbose = false, unknown_storage = :sparse, assembly = :edgewise)
    h = 1 / n
    grid = simplexgrid(collect(0:h:1))

    eps::Vector{Float64} = [1.0, 1.0]

    physics = VoronoiFVM.Physics(
        ; reaction = function (f, u, node, data)
            f[1] = u[1] * u[2]
            f[2] = -u[1] * u[2]
            return nothing
        end,
        flux = function (f, u, edge, data)
            nspecies = 2
            f[1] = eps[1] * (u[1, 1] - u[1, 2]) *
                (0.01 + u[2, 1] + u[2, 2])
            f[2] = eps[2] * (u[2, 1] - u[2, 2]) *
                (0.01 + u[1, 1] + u[1, 2])
            return nothing
        end,
        source = function (f, node, data)
            f[1] = 1.0e-4 * (0.01 + node[1])
            f[2] = 1.0e-4 * (0.01 + 1.0 - node[1])
            return nothing
        end,
        storage = function (f, u, node, data)
            f[1] = u[1]
            f[2] = u[2]
            return nothing
        end
    )

    sys = VoronoiFVM.System(grid, physics; unknown_storage = unknown_storage)

    enable_species!(sys, 1, [1])
    enable_species!(sys, 2, [1])

    boundary_dirichlet!(sys, 1, 1, 1.0)
    boundary_dirichlet!(sys, 1, 2, 0.0)

    boundary_dirichlet!(sys, 2, 1, 1.0)
    boundary_dirichlet!(sys, 2, 2, 0.0)

    U = unknowns(sys)
    U .= 0

    control = VoronoiFVM.NewtonControl()
    control.verbose = verbose
    control.damp_initial = 0.1
    u5 = 0
    p = GridVisualizer(; Plotter = Plotter, layout = (2, 1))
    for xeps in [1.0, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01]
        eps = [xeps, xeps]
        U = solve(sys; inival = U, control)
        scalarplot!(p[1, 1], grid, U[1, :]; clear = true, title = "U1, eps=$(xeps)")
        scalarplot!(
            p[2, 1], grid, U[2, :]; clear = true, title = "U2, eps=$(xeps)",
            reveal = true
        )
        sleep(0.2)
        u5 = U[5]
    end
    return u5
end

using Test
function runtests()
    testval = 0.7117546972922056

    @test main(; unknown_storage = :sparse, assembly = :edgewise) ≈ testval &&
        main(; unknown_storage = :dense, assembly = :edgewise) ≈ testval &&
        main(; unknown_storage = :sparse, assembly = :cellwise) ≈ testval &&
        main(; unknown_storage = :dense, assembly = :cellwise) ≈ testval

    return nothing
end
end

This page was generated using Literate.jl.