115: 1D heterogeneous catalysis
Let $\Omega=(0,1)$, $\Gamma_1=\{0\}$, $\Gamma_2=\{1\}$ Regard a system of three species: $A,B,C$ and let $u_A=[A]$, $u_B=[B]$ and $u_C=[C]$ be their corresponding concentrations.
Species $A$ and $B$ exist in the interior of the domain, species $C$ lives a the boundary $\Gamma_1$. We assume a heterogeneous reaction scheme where $A$ reacts to $C$ and $C$ reacts to $B$:
\[\begin{aligned} A &\leftrightarrow C\\ C &\leftrightarrow B \end{aligned}\]
with reaction constants $k_{AC}^\pm$ and k_{BC}^\pm$.
In $\Omega$, both $A$ and $B$ are transported through diffusion:
\[\begin{aligned} \partial_t u_B - \nabla\cdot D_A \nabla u_A & = f_A\\ \partial_t u_B - \nabla\cdot D_B \nabla u_B & = 0\\ \end{aligned}\]
Here, $f(x)$ is a source term creating $A$. On $\Gamma_2$, we set boundary conditions
\[\begin{aligned} D_A \nabla u_A & = 0\\ u_B&=0 \end{aligned}\]
describing no normal flux for $A$ and zero concentration of $B$. On $\Gamma_1$, we use the mass action law to describe the boundary reaction and the evolution of the boundary concentration $C$. We assume that there is a limited amount of surface sites $S$ for species C, so in fact A has to react with a free surface site in order to become $C$ which reflected by the factor $1-u_C$. The same is true for $B$.
\[\begin{aligned} R_{AC}(u_A, u_C)&=k_{AC}^+ u_A(1-u_C) - k_{AC}^-u_C\\ R_{BC}(u_C, u_B)&=k_{BC}^+ u_B(1-u_C) - k_{BC}^-u_C\\ - D_A \nabla u_A + S R_{AC}(u_A, u_C)& =0 \\ - D_B \nabla u_B + S R_{BC}(u_B, u_C)& =0 \\ \partial_t C - R_{AC}(u_A, u_C) - R_{BC}(u_B, u_C) &=0 \end{aligned}\]
module Example115_HeterogeneousCatalysis1D
using Printf
using VoronoiFVM
using ExtendableGrids
using GridVisualize
using LinearAlgebra
using OrdinaryDiffEqRosenbrock
using SciMLBase: NoInit
function main(;
n = 10, Plotter = nothing, verbose = false, tend = 1,
unknown_storage = :sparse, assembly = :edgewise,
diffeq = false
)
h = 1.0 / convert(Float64, n)
X = collect(0.0:h:1.0)
N = length(X)
grid = simplexgrid(X)
# By default, \Gamma_1 at X[1] and \Gamma_2 is at X[end]
# Species numbers
iA = 1
iB = 2
iC = 3
# Diffusion flux for species A and B
D_A = 1.0
D_B = 1.0e-2
function flux!(f, u, edge, data)
f[iA] = D_A * (u[iA, 1] - u[iA, 2])
f[iB] = D_B * (u[iB, 1] - u[iB, 2])
return nothing
end
# Storage term of species A and B
function storage!(f, u, node, data)
f[iA] = u[iA]
f[iB] = u[iB]
return nothing
end
# Source term for species a around 0.5
function source!(f, node, data)
x1 = node[1] - 0.5
f[iA] = exp(-100 * x1^2)
return nothing
end
# Reaction constants (p = + , m = -)
# Chosen to prefer path A-> C -> B
# More over, A reacts faster than to C than C to B
# leading to "catalyst poisoning", i.e. C taking up most of the
# available catalyst sites
kp_AC = 100.0
km_AC = 1.0
kp_BC = 0.1
km_BC = 1.0
S = 0.01
R_AC(u_A, u_C) = kp_AC * u_A * (1 - u_C) - km_AC * u_C
R_BC(u_B, u_C) = kp_BC * u_B * (1 - u_C) - km_BC * u_C
function breaction!(f, u, node, data)
if node.region == 1
f[iA] = S * R_AC(u[iA], u[iC])
f[iB] = S * R_BC(u[iB], u[iC])
f[iC] = -R_BC(u[iB], u[iC]) - R_AC(u[iA], u[iC])
end
return nothing
end
# This is for the term \partial_t u_C at the boundary
function bstorage!(f, u, node, data)
if node.region == 1
f[iC] = u[iC]
end
return nothing
end
physics = VoronoiFVM.Physics(;
breaction = breaction!,
bstorage = bstorage!,
flux = flux!,
storage = storage!,
source = source!
)
sys = VoronoiFVM.System(grid, physics; unknown_storage = unknown_storage)
# Enable species in bulk resp
enable_species!(sys, iA, [1])
enable_species!(sys, iB, [1])
# Enable surface species
enable_boundary_species!(sys, iC, [1])
# Set Dirichlet bc for species B on \Gamma_2
boundary_dirichlet!(sys, iB, 2, 0.0)
# Initial values
inival = unknowns(sys)
inival .= 0.0
U = unknowns(sys)
tstep = 0.01
time = 0.0
# Data to store surface concentration vs time
p = GridVisualizer(; Plotter = Plotter, layout = (3, 1))
if diffeq
inival = unknowns(sys, inival = 0)
problem = ODEProblem(sys, inival, (0, tend))
# use fixed timesteps just for the purpose of CI
odesol = solve(problem, Rosenbrock23(); initializealg = NoInit(), dt = tstep, adaptive = false)
tsol = reshape(odesol, sys)
else
control = fixed_timesteps!(VoronoiFVM.NewtonControl(), tstep)
tsol = solve(sys; inival, times = [0, tend], control, verbose = verbose)
end
p = GridVisualizer(; Plotter = Plotter, layout = (3, 1), fast = true)
for it in 1:length(tsol)
time = tsol.t[it]
scalarplot!(
p[1, 1], grid, tsol[iA, :, it]; clear = true,
title = @sprintf("[A]: (%.3f,%.3f)", extrema(tsol[iA, :, it])...)
)
scalarplot!(
p[2, 1], grid, tsol[iB, :, it]; clear = true,
title = @sprintf("[B]: (%.3f,%.3f)", extrema(tsol[iB, :, it])...)
)
scalarplot!(
p[3, 1], tsol.t[1:it], tsol[iC, 1, 1:it]; title = @sprintf("[C]"),
clear = true, show = true
)
end
return tsol[iC, 1, end]
end
using Test
function runtests()
testval = 0.87544440641274
testvaldiffeq = 0.8891082547874963
@test isapprox(main(; unknown_storage = :sparse, assembly = :edgewise), testval; rtol = 1.0e-12)
@test isapprox(main(; unknown_storage = :dense, assembly = :edgewise), testval; rtol = 1.0e-12)
@test isapprox(main(; unknown_storage = :sparse, assembly = :cellwise), testval; rtol = 1.0e-12)
@test isapprox(main(; unknown_storage = :dense, assembly = :cellwise), testval; rtol = 1.0e-12)
@test isapprox(main(; diffeq = true, unknown_storage = :sparse, assembly = :edgewise), testvaldiffeq; rtol = 1.0e-12)
@test isapprox(main(; diffeq = true, unknown_storage = :dense, assembly = :edgewise), testvaldiffeq; rtol = 1.0e-12)
@test isapprox(main(; diffeq = true, unknown_storage = :sparse, assembly = :cellwise), testvaldiffeq; rtol = 1.0e-12)
@test isapprox(main(; diffeq = true, unknown_storage = :dense, assembly = :cellwise), testvaldiffeq; rtol = 1.0e-12)
return nothing
end
end
This page was generated using Literate.jl.