151: Impedance calculation
Same as Example150, but with new and more generic way of passing the parameter.
Impedance calculation for
C ut - (D ux)_x + Ru = 0 in (0,1) u(0,t)=1 + exp(iωt) u(1,t)=0
Measurement: I(t)= D u_x(1,t)
Steady state:
- (D u0x)x + Ru0 = 0
u0(0,t)=1 u0(1,t)=0
Small signal ansatz for ω
u(x,t)= u0(x)+ ua(x) exp(iωt)
iωC ua - (D uax)x + R u_a =0 ua(0)=1 ua(1)=0
module Example151_Impedance1D
using Printf
using VoronoiFVM
using ExtendableGrids: geomspace, simplexgrid
using GridVisualize
using OrdinaryDiffEqSDIRK
function main(;
nref = 0, Plotter = nothing, verbose = false,
unknown_storage = :sparse, assembly = :edgewise,
time_embedding = :none,
L = 1.0, R = 1.0, D = 1.0, C = 1.0,
ω0 = 1.0e-3, ω1 = 5.0e1
)
Create array which is refined close to 0
h0 = 0.005 / 2.0^nref
h1 = 0.1 / 2.0^nref
X = geomspace(0, L, h0, h1)
Create discretitzation grid
grid = simplexgrid(X)
Create and fill data
data = (R = R, D = D, C = C)
Declare constitutive functions
flux = function (f, u, edge, data)
f[1] = data.D * (u[1, 1] - u[1, 2])
return nothing
end
storage = function (f, u, node, data)
f[1] = data.C * u[1]
return nothing
end
reaction = function (f, u, node, data)
f[1] = data.R * u[1]
return nothing
end
excited_bc = 1
excited_bcval = 1.0
excited_spec = 1
meas_bc = 2
bc = function (f, u, node, data)
p = parameters(u)
boundary_dirichlet!(f, u, node; region = excited_bc, value = p[1])
boundary_dirichlet!(f, u, node; region = meas_bc, value = 0.0)
return nothing
end
Create discrete system and enable species
sys = VoronoiFVM.System(
grid; unknown_storage = unknown_storage,
data = data,
flux = flux,
storage = storage,
reaction = reaction,
bcondition = bc,
nparams = 1,
species = 1, assembly = assembly
)
Create test functions for current measurement
factory = TestFunctionFactory(sys)
measurement_testfunction = testfunction(factory, [excited_bc], [meas_bc])
tend = 1.0
if time_embedding == :builtin
tsol = solve(sys; inival = 0.0, params = [1.0], times = (0.0, tend), force_first_step = true)
steadystate = tsol.u[end]
elseif time_embedding == :ordinarydiffeq
inival = unknowns(sys, inival = 0)
problem = ODEProblem(sys, inival, (0, tend); params = [1.0])
odesol = solve(problem, ImplicitEuler())
tsol = reshape(odesol, sys)
steadystate = tsol.u[end]
elseif time_embedding == :none
steadystate = solve(sys; inival = 0.0, params = [1.0])
else
error("time_embedding must be one of :builtin, :ordinarydiffeq, :none")
end
function meas_stdy(meas, U)
u = reshape(U, sys)
meas[1] = -VoronoiFVM.integrate_stdy(sys, measurement_testfunction, u)[excited_spec]
return nothing
end
function meas_tran(meas, U)
u = reshape(U, sys)
meas[1] = -VoronoiFVM.integrate_tran(sys, measurement_testfunction, u)[excited_spec]
return nothing
end
dmeas_stdy = measurement_derivative(sys, meas_stdy, steadystate)
dmeas_tran = measurement_derivative(sys, meas_tran, steadystate)
Create Impeadancs system from steady state
isys = VoronoiFVM.ImpedanceSystem(sys, steadystate)
Prepare recording of impedance results
allomega = zeros(0)
for calculated data
allI0 = zeros(Complex{Float64}, 0)
allIL = zeros(Complex{Float64}, 0)
for exact data
allIx0 = zeros(Complex{Float64}, 0)
allIxL = zeros(Complex{Float64}, 0)
ω = ω0
UZ = unknowns(isys)
while ω < ω1
solve impedance system
solve!(UZ, isys, ω)
calculate approximate solution obtain measurement in frequency domain
IL = impedance(isys, ω, steadystate, dmeas_stdy, dmeas_tran)
record approximate solution
push!(allomega, ω)
push!(allIL, IL)
record exact solution
iω = 1im * ω
z = sqrt(iω * data.C / data.D + data.R / data.D)
eplus = exp(z * L)
eminus = exp(-z * L)
IxL = 2.0 * data.D * z / (eplus - eminus)
push!(allIxL, 1 / IxL)
increase omega
ω = ω * 1.1
end
vis = GridVisualizer(; Plotter = Plotter)
scalarplot!(
vis, real(allIxL), imag(allIxL); label = "exact", color = :red,
linestyle = :dot
)
scalarplot!(
vis, real(allIL), imag(allIL); label = "calc", show = true, clear = false,
color = :blue, linestyle = :solid
)
return sum(allIL)
end
using Test
function runtests()
testval = 57.92710286186797 + 23.163945443946027im
for unknown_storage in (:sparse, :dense)
for assembly in (:edgewise, :cellwise)
for time_embedding in (:none, :builtin, :ordinarydiffeq)
@test main(; unknown_storage, assembly, time_embedding) ≈ testval
end
end
end
return nothing
end
end
This page was generated using Literate.jl.