160: Unipolar degenerate drift-diffusion
See: C. Cancès, C. Chainais-Hillairet, J. Fuhrmann, and B. Gaudeul, "A numerical-analysis-focused comparison of several finite volume schemes for a unipolar degenerate drift-diffusion model" IMA Journal of Numerical Analysis, vol. 41, no. 1, pp. 271–314, 2021.
Available from https://doi.org/10.1093/imanum/draa002, the preprint is on arxiv1907.11126.
The problem consists of a Poisson equation for the electrostatic potential $\phi$:
\[-\nabla \varepsilon \nabla \phi = z(2c-1)\]
and a degenerate drift-diffusion equation of the transport of a charged species $c$:
\[\partial_t u - \nabla\cdot \left(\nabla c + c \nabla (\phi - \log (1-c) )\right)\]
In particular, the paper, among others, investigates the "sedan" flux discretization which is able to handle the degeneracy coming from the $\log (1-c)$ term. The earliest reference to this scheme we found in the source code of the SEDAN III semiconductor device simulator.
module Example160_UnipolarDriftDiffusion1D
using Printf
using VoronoiFVM
using ExtendableGrids
using GridVisualize
using LinearSolve
mutable struct Data
eps::Float64
z::Float64
ic::Int32
iphi::Int32
V::Float64
Data() = new()
end
function classflux!(f, u, edge, data)
ic = data.ic
iphi = data.iphi
f[iphi] = data.eps * (u[iphi, 1] - u[iphi, 2])
bp, bm = fbernoulli_pm(u[iphi, 1] - u[iphi, 2])
f[ic] = bm * u[ic, 1] - bp * u[ic, 2]
return nothing
end
function storage!(f, u, node, data)
ic = data.ic
iphi = data.iphi
f[iphi] = 0
f[ic] = u[ic]
return nothing
end
function reaction!(f, u, node, data)
ic = data.ic
iphi = data.iphi
f[iphi] = data.z * (1 - 2 * u[ic])
f[ic] = 0
return nothing
end
const eps_reg = 1.0e-10
function sedanflux!(f, u, edge, data)
ic = data.ic
iphi = data.iphi
f[iphi] = data.eps * (u[iphi, 1] - u[iphi, 2])
mu1 = -log1p(max(-1 + eps_reg, -u[ic, 1]))
mu2 = -log1p(max(-1 + eps_reg, -u[ic, 2]))
bp, bm = fbernoulli_pm(data.z * 2 * (u[iphi, 1] - u[iphi, 2]) + (mu1 - mu2))
f[ic] = bm * u[ic, 1] - bp * u[ic, 2]
return nothing
end
function bcondition!(f, u, bnode, data)
V = ramp(bnode.time; dt = (0, 1.0e-2), du = (0, data.V))
boundary_dirichlet!(f, u, bnode; species = data.iphi, region = 1, value = V)
boundary_dirichlet!(f, u, bnode; species = data.iphi, region = 2, value = 0)
boundary_dirichlet!(f, u, bnode; species = data.ic, region = 2, value = 0.5)
return nothing
end
function main(;
n = 20,
Plotter = nothing,
dlcap = false,
verbose = false,
phimax = 1,
dphi = 1.0e-1,
unknown_storage = :sparse,
assembly = :edgewise,
)
h = 1.0 / convert(Float64, n)
grid = simplexgrid(collect(0:h:1))
data = Data()
data.eps = 1.0e-3
data.z = -1
data.iphi = 1
data.ic = 2
data.V = 5
ic = data.ic
iphi = data.iphi
physics = VoronoiFVM.Physics(;
data = data,
flux = sedanflux!,
reaction = reaction!,
breaction = bcondition!,
storage = storage!,
)
sys = VoronoiFVM.System(
grid,
physics;
unknown_storage = unknown_storage,
species = [1, 2],
assembly = assembly,
)
inival = unknowns(sys)
@views inival[iphi, :] .= 0
@views inival[ic, :] .= 0.5
if !dlcap
# Create solver control info for constant time step size
tstep = 1.0e-5
control = VoronoiFVM.NewtonControl()
control.verbose = false
control.Δt_min = tstep
control.Δt = tstep
control.Δt_grow = 1.1
control.Δt_max = 0.1
control.Δu_opt = 0.1
control.damp_initial = 0.5
tsol = solve(
sys;
method_linear = UMFPACKFactorization(),
inival,
times = [0.0, 10],
control = control,
)
vis = GridVisualizer(; Plotter = Plotter, layout = (1, 1), fast = true)
for log10t in -4:0.025:0
time = 10^(log10t)
sol = tsol(time)
scalarplot!(
vis[1, 1],
grid,
sol[iphi, :];
label = "ϕ",
title = @sprintf("time=%.3g", time),
flimits = (0, 5),
color = :green,
)
scalarplot!(
vis[1, 1],
grid,
sol[ic, :];
label = "c",
flimits = (0, 5),
clear = false,
color = :red,
)
reveal(vis)
end
return sum(tsol.u[end])
else # Calculate double layer capacitance
U = unknowns(sys)
control = VoronoiFVM.NewtonControl()
control.damp_initial = 1.0e-5
delta = 1.0e-4
@views inival[iphi, :] .= 0
@views inival[ic, :] .= 0.5
sys.boundary_values[iphi, 1] = 0
delta = 1.0e-4
vplus = zeros(0)
cdlplus = zeros(0)
vminus = zeros(0)
cdlminus = zeros(0)
cdl = 0.0
vis = GridVisualizer(; Plotter = Plotter, layout = (2, 1), fast = true)
for dir in [1, -1]
phi = 0.0
U .= inival
while phi < phimax
data.V = dir * phi
U = solve(sys; inival = U, control, time = 1.0)
Q = integrate(sys, physics.reaction, U)
data.V = dir * phi + delta
U = solve(sys; inival = U, control, time = 1.0)
Qdelta = integrate(sys, physics.reaction, U)
cdl = (Qdelta[iphi] - Q[iphi]) / delta
if Plotter != nothing
scalarplot!(
vis[1, 1],
grid,
U[iphi, :];
label = "ϕ",
title = @sprintf("Δϕ=%.3g", phi),
flimits = (-5, 5),
clear = true,
color = :green,
)
scalarplot!(
vis[1, 1],
grid,
U[ic, :];
label = "c",
flimits = (0, 5),
clear = false,
color = :red,
)
end
if dir == 1
push!(vplus, dir * phi)
push!(cdlplus, cdl)
else
push!(vminus, dir * phi)
push!(cdlminus, cdl)
end
if Plotter != nothing
scalarplot!(vis[2, 1], [0, 1.0e-1], [0, 0.05]; color = :white, clear = true)
end
v = vcat(reverse(vminus), vplus)
c = vcat(reverse(cdlminus), cdlplus)
if length(v) >= 2
scalarplot!(
vis[2, 1],
v,
c;
color = :green,
clear = false,
title = "C_dl",
)
end
phi += dphi
reveal(vis)
end
end
return cdl
end
end
using Test
function runtests()
evolval = 18.721369939565655
dlcapval = 0.025657355479449806
rtol = 1.0e-5
@test isapprox(
main(; unknown_storage = :sparse, dlcap = false, assembly = :edgewise),
evolval;
rtol = rtol,
)
@test isapprox(
main(; unknown_storage = :sparse, dlcap = true, assembly = :edgewise),
dlcapval;
rtol = rtol,
)
@test isapprox(
main(; unknown_storage = :dense, dlcap = false, assembly = :edgewise),
evolval;
rtol = rtol,
)
@test isapprox(
main(; unknown_storage = :dense, dlcap = true, assembly = :edgewise),
dlcapval;
rtol = rtol,
)
@test isapprox(
main(; unknown_storage = :sparse, dlcap = false, assembly = :cellwise),
evolval;
rtol = rtol,
)
@test isapprox(
main(; unknown_storage = :sparse, dlcap = true, assembly = :cellwise),
dlcapval;
rtol = rtol,
)
@test isapprox(
main(; unknown_storage = :dense, dlcap = false, assembly = :cellwise),
evolval;
rtol = rtol,
)
@test isapprox(
main(; unknown_storage = :dense, dlcap = true, assembly = :cellwise),
dlcapval;
rtol = rtol,
)
return nothing
end
end
This page was generated using Literate.jl.