204: 2D Convection in Hagen-Poiseuille flow
Solve the equation
\[\partial_t u -\nabla ( D \nabla u - v u) = 0\]
in $\Omega=(0,L)\times (0,H)$ with dirichlet boundary conditions at $x=0$ and outflow boundary condition at $x=L$.
module Example204_HagenPoiseuille
using Printf
using VoronoiFVM
using ExtendableGrids
using GridVisualize
function main(; nref = 0, Plotter = nothing, D = 0.01, v = 1.0, tend = 100, cin = 1.0, assembly = :edgewise)
H = 1.0
L = 5.0
grid = simplexgrid(range(0, L; length = 20 * 2^nref),
range(0, H; length = 5 * 2^nref))
function fhp(x, y)
yh = y / H
return v * 4 * yh * (1.0 - yh), 0
end
evelo = edgevelocities(grid, fhp)
bfvelo = bfacevelocities(grid, fhp)
function flux!(f, u, edge, data)
vd = evelo[edge.index] / D
bp = fbernoulli(vd)
bm = fbernoulli(-vd)
f[1] = D * (bp * u[1] - bm * u[2])
end
function outflow!(f, u, node, data)
if node.region == 2
f[1] = bfvelo[node.ibnode, node.ibface] * u[1]
end
end
ispec = 1
physics = VoronoiFVM.Physics(; flux = flux!, breaction = outflow!)
sys = VoronoiFVM.System(grid, physics; assembly = assembly)
enable_species!(sys, ispec, [1])
boundary_dirichlet!(sys, ispec, 4, cin)
# Transient solution of the problem
control = VoronoiFVM.NewtonControl()
control.Δt = 0.01 * 2.0^(-nref)
control.Δt_min = 0.01 * 2.0^(-nref)
control.Δt_max = 0.1 * tend
control.force_first_step = true
tsol = solve(sys; inival = 0, times = [0, tend], control = control)
vis = GridVisualizer(; Plotter = Plotter)
for i = 1:length(tsol.t)
scalarplot!(vis[1, 1], grid, tsol[1, :, i]; flimits = (0, cin + 1.0e-5),
title = @sprintf("time=%3f", tsol.t[i]), show = true)
end
tsol
end
using Test
function runtests()
tsol1 = main(; assembly = :edgewise)
tsol2 = main(; assembly = :cellwise)
@test all(tsol1.u[end] .≈ 1)
@test all(tsol1.u[end] .≈ 1)
end
end
This page was generated using Literate.jl.