210: 2D Nonlinear Poisson with reaction
module Example210_NonlinearPoisson2D_Reaction
using Printf
using VoronoiFVM
using ExtendableGrids
using GridVisualize
import Metis
function main(; n = 10, Plotter = nothing, verbose = false, unknown_storage = :sparse, assembly = :edgewise)
h = 1.0 / convert(Float64, n)
X = collect(0.0:h:1.0)
Y = collect(0.0:h:1.0)
grid = simplexgrid(X, Y)
grid=partition(grid, PlainMetisPartitioning(npart=10))
@show grid
data = (eps = 1.0e-2, k = 1.0)
function reaction!(f, u, node, data)
f[1] = data.k * (u[1] - u[2])
f[2] = data.k * (u[2] - u[1])
end
function flux!(f, u, edge, data)
f[1] = data.eps * (u[1, 1] - u[1, 2])
f[2] = data.eps * (u[2, 1] - u[2, 2])
end
function source!(f, node, data)
x1 = node[1] - 0.5
x2 = node[2] - 0.5
f[1] = exp(-20 * (x1^2 + x2^2))
end
function storage!(f, u, node, data)
f[1] = u[1]
f[2] = u[2]
end
physics = VoronoiFVM.Physics(; data = data,
flux = flux!,
storage = storage!,
reaction = reaction!,
source = source!)
sys = VoronoiFVM.System(grid, physics; unknown_storage = unknown_storage, assembly = assembly)
enable_species!(sys, 1, [1])
enable_species!(sys, 2, [1])
inival = unknowns(sys)
inival .= 0.0
control = VoronoiFVM.NewtonControl()
control.verbose = verbose
tstep = 0.01
time = 0.0
istep = 0
testval=0
p = GridVisualizer(; Plotter = Plotter, layout = (2, 1))
@time while time < 1
time = time + tstep
U = solve(sys; inival, control, tstep)
inival .= U
testval=sum(U)
tstep *= 1.0
istep = istep + 1
scalarplot!(p[1, 1], grid, U[1, :]; clear = true, limits=(0,0.5))
scalarplot!(p[2, 1], grid, U[2, :]; show = true, limits=(0,0.5))
end
return testval
end
using Test
function runtests()
testval = 16.01812472041518
@test main(; unknown_storage = :sparse, assembly = :edgewise) ≈ testval &&
main(; unknown_storage = :dense, assembly = :edgewise) ≈ testval &&
main(; unknown_storage = :sparse, assembly = :cellwise) ≈ testval &&
main(; unknown_storage = :dense, assembly = :cellwise) ≈ testval
end
end
This page was generated using Literate.jl.