225: Terminal flux calculation via test functions, nD
After calculating solutions based on the finite volume method, it may be interesting to obtain information about the solution besides of the graphical representation.
Here, we focus on the following data:
- integrals of the solution
- flux through parts of the boundary
Let us define the following reaction - diffusion system in a domain $\Omega$:
\[\begin{aligned} \partial_t u_1 - \nabla \cdot \nabla u_1 + r(u_1, u_2) &= f=1.0\\ \partial_t u_2 - \nabla \cdot \nabla u_1 - r(u_1, u_2) &= 0 \end{aligned}\]
with boundary conditions $u_2=0$ on $\Gamma_2\subset\partial\Omega$ and $r(u_1,u_2)=u_1 + 0.1 u_2$
The source $f$ creates species $u_1$ which reacts to $u_2$, $u_2$ then leaves the domain at boundary $\Gamma_2$.
Stationary problem
For the stationary problem, we have the following flux balances derived from the equations and from Gauss theorem:
\[\begin{aligned} \int_\Omega r(u_1,u_2) d\omega &= \int_\Omega f d\omega \\ \int_\Omega -r(u_1,u_2) d\omega &= \int_{\Gamma_2} \nabla u \cdot \vec n ds \\ \end{aligned}\]
The volume integrals can be approximated based on the finite volume subdivision $\Omega=\cup_{i\in \mathcal N} \omega_i$:
\[\begin{aligned} \int_\Omega r(u_1,u_2) d\omega &\approx \sum_{i\in \mathcal N} |\omega_i| r(u_{1,i},u_{2,i})\\ \int_\Omega f d\omega &\approx \sum_{i\in \mathcal N} |\omega_i| f_i \end{aligned}\]
But what about the boundary integral ? Here, we use a trick to cast the surface integral to the integral to a volume integral with the help of a test function:
Let $T(x)$ be the solution of the Laplace problem $-\nabla^2 T =0$ in $\Omega$ and the boundary conditions
\[\begin{aligned} T &=0 \quad \text{at}\; \Gamma_4\\ T &=1 \quad \text{at}\; \Gamma_2\\ \partial_n T &=0\quad \text{at}\; \Gamma_1,\Gamma_3 \end{aligned}\]
Write $\vec j=-\nabla u$. and assume $\nabla\cdot \vec j + r =f$.
\[\begin{aligned} \int_{\Gamma_2} \vec j \cdot \vec n ds&=\int_{\Gamma_2} T\vec j \cdot \vec n ds \quad \text{due to}\; T=1\; \text{on}\; \Gamma_2\\ &=\int_{\partial\Omega} T\vec j \cdot \vec n ds\quad \text{due to}\; T=0\; \text{on}\; \Gamma_4, \quad\vec j\cdot \vec n=0\; \text{on}\; \Gamma_1, \Gamma_3\\ &= \int_\Omega \nabla \cdot (T \vec j) d\omega \quad \text{(Gauss)}\\ &= \int_\Omega \nabla T \cdot \vec j d\omega + \int_\Omega T \nabla\cdot j d\omega\\ &= \int_\Omega \nabla T \cdot \vec j d\omega + \int_\Omega T(f-r)dω\\ \end{aligned}\]
and we approximate
\[\begin{aligned} \int_\Omega \nabla T \cdot \vec j d\omega \approx \sum_{k,l} \frac{|\omega_k\cap\omega_l|}{h_{k,l}}g(u_k, u_l) (T_k-T_l) \end{aligned}\]
where the sum runs over pairs of neighboring control volumes.
The integrate
method with a test function parameter returns a value for each species, the sign convention assumes that species leaving the domain lead to negative values.
Transient problem
The amount of species created via the source term (measured in F
) integrated over time should be equal to the sum of the amount of species left in the domain at the very end of the evolution and the amount of species which left the domain:
\[\int_{t_0}^{t_{end}} \int_\Omega f d\omega dt= \int_\Omega (u_1+u_2)dω + \int_{t_0}^{t_{end}} \int_{\Gamma_2} \nabla u_2 \cdot \vec n ds\]
Literature references:
- H. Gajewski "Analysis und Numerik von Ladungstransport in Halbleitern", WIAS Berlin, Report No.6
- Yoder, P. D., K. Gärtner, and W. Fichtner. "A generalized Ramo–Shockley theorem for classical to quantum transport at arbitrary frequencies." Journal of Applied Physics 79.4 (1996): 1951-1954.
- P. Farrell, N. Rotundo, D. H. Doan, M. Kantner, J. Fuhrmann, and T. Koprucki, "Numerical methods for drift-diffusion models", in Handbook of optoelectronic device modeling and simulation: Lasers, modulators, photodetectors, solar cells, and numerical methods, vol. 2, J. Piprek, Ed. Boca Raton: CRC Press, 2017, pp. 733–771.
module Example225_TestFunctions2D
using VoronoiFVM, GridVisualize, ExtendableGrids
function main(;
n = 10, Plotter = nothing, verbose = false, unknown_storage = :sparse, assembly = :edgewise,
dim = 2, tend = 5, dt = 0.2
)
n = [101, 21, 5]
X = collect(range(0.0, 1; length = n[dim]))
if dim == 1
grid = simplexgrid(X)
Γ_where_T_equal_1 = [2]
Γ_where_T_equal_0 = [1]
elseif dim == 2
grid = simplexgrid(X, X)
Γ_where_T_equal_1 = [2]
Γ_where_T_equal_0 = [4]
elseif dim == 3
grid = simplexgrid(X, X, X)
Γ_where_T_equal_1 = [2]
Γ_where_T_equal_0 = [4]
end
function storage(f, u, node, data)
f .= u
return nothing
end
function flux(f, u, edge, data)
f[1] = u[1, 1] - u[1, 2]
f[2] = u[2, 1] - u[2, 2]
return nothing
end
r(u1, u2) = u1 - 0.1 * u2
function reaction(f, u, node, data)
f[1] = r(u[1], u[2])
f[2] = -r(u[1], u[2])
return nothing
end
function source(f, node, data)
f[1] = 1.0
return nothing
end
physics = VoronoiFVM.Physics(;
flux = flux,
storage = storage,
reaction = reaction,
source = source
)
system = VoronoiFVM.System(grid, physics; assembly = assembly)
enable_species!(system, 1, [1])
enable_species!(system, 2, [1])
boundary_dirichlet!(system, 2, 2, 0.0)
sol = solve(system; inival = 0.0)
vis = GridVisualizer(;
Plotter = Plotter, layout = (1, 2), resolution = (600, 300),
fignumber = 1
)
scalarplot!(vis[1, 1], grid, sol[1, :]; flimits = (0, 1.5), title = "u_1")
scalarplot!(vis[1, 2], grid, sol[2, :]; flimits = (0, 1.5), title = "u_2", show = true)
"""
The `integrate` method of `VoronoiFVM` provides a possibility to calculate
the volume integral of a function of a solution as described above.
It returns a `num_specie` x `num_regions` matrix of the integrals
of the function of the unknowns over the different subdomains (here, we have only one):
"""
"""
Amount of u_1 and u_2 in the domain aka integral over identity storage function:
"""
U = integrate(system, storage, sol)
"""
Amount of species created by source term per unit time:
"""
F = integrate(system, (f, u, node, data) -> source(f, node, data), sol)
"""
Amount of reaction per unit time:
"""
R = integrate(system, reaction, sol)
tf = TestFunctionFactory(system)
T = testfunction(tf, Γ_where_T_equal_0, Γ_where_T_equal_1)
I = integrate(system, T, sol)
t0 = 0.0
control = fixed_timesteps!(VoronoiFVM.NewtonControl(), dt)
tsol = solve(system; inival = 0.0, times = [t0, tend], control)
vis1 = GridVisualizer(;
Plotter = Plotter, layout = (1, 2), resolution = (600, 300),
fignumber = 4
)
for i in 1:length(tsol)
sol = tsol.u[i]
scalarplot!(vis1[1, 1], grid, sol[1, :]; flimits = (0, 1.5), clear = true)
scalarplot!(vis1[1, 2], grid, sol[2, :]; flimits = (0, 1.5), show = true)
end
outflow_rate = Float64[]
for i in 2:length(tsol)
ofr = integrate(system, T, tsol.u[i], tsol.u[i - 1], tsol.t[i] - tsol.t[i - 1])
push!(outflow_rate, ofr[2])
end
vis2 = GridVisualizer(;
Plotter = Plotter, layout = (1, 1), resolution = (600, 300),
fignumber = 2
)
scalarplot!(vis2[1, 1], [0, tend], -[I[2], I[2]]; label = "stationary", clear = true)
scalarplot!(vis2[1, 1], tsol.t[2:end], -outflow_rate; label = "transient", show = true)
all_outflow = 0.0
for i in 1:(length(tsol) - 1)
all_outflow -= outflow_rate[i] * (tsol.t[i + 1] - tsol.t[i])
end
Uend = integrate(system, storage, tsol.u[end])
isapprox(F[1], R[1]; rtol = 1.0e-12) ? true : return false
isapprox(I[1], 0.0; atol = 1.0e-12) ? true : return false
isapprox(R[2], I[2]; rtol = 1.0e-12) ? true : return false
return isapprox(F[1] * (tend - t0), (Uend[1] + Uend[2] + all_outflow); rtol = 1.0e-12) ? true :
return false
end
using Test
function runtests()
@test main(; dim = 1, unknown_storage = :sparse, assembly = :edgewise)
@test main(; dim = 1, unknown_storage = :dense, assembly = :edgewise)
@test main(; dim = 2, unknown_storage = :sparse, assembly = :edgewise)
@test main(; dim = 2, unknown_storage = :dense, assembly = :edgewise)
@test main(; dim = 3, unknown_storage = :sparse, assembly = :edgewise)
@test main(; dim = 3, unknown_storage = :dense, assembly = :edgewise)
@test main(; dim = 1, unknown_storage = :sparse, assembly = :cellwise)
@test main(; dim = 1, unknown_storage = :dense, assembly = :cellwise)
@test main(; dim = 2, unknown_storage = :sparse, assembly = :cellwise)
@test main(; dim = 2, unknown_storage = :dense, assembly = :cellwise)
@test main(; dim = 3, unknown_storage = :sparse, assembly = :cellwise)
@test main(; dim = 3, unknown_storage = :dense, assembly = :cellwise)
return nothing
end
end
This page was generated using Literate.jl.