103: Boundary flux
We consider two test problems.
Testproblem A: Consider in $\Omega_1=(0,1)$
\[- d_1 \Delta u_1 + k_1 u_1 = c_1\]
in with homogeneous Neumann boundary conditions.
Testproblem B: Consider in \Omega_2=(0,1) x (0, 1) $
\[- d_2 \Delta u_2 + k_2 u_2 = c_2\]
in with homogeneous Neumann boundary conditions and at the right boundary, i.e. $ {1} x (0, 1) $
\[- d_b \Delta v + k_b v = c_b.\]
If d1 = db, k1 = kb and c1 = cb, then u and v should coincide.
module Example230_BoundaryFlux
using VoronoiFVM
using ExtendableGrids
using GridVisualize
function main(;
n = 2 * 10, # n musst be an even number
d1 = 5.0, db = 5.0, # prefactors (before diffusive part)
kmax = 2.0, cmax = 3.0,
Plotter = nothing,
unknown_storage = :sparse, assembly = :edgewise
)
###########################################################################
###################### 1D problem ######################
###########################################################################
ispec_1D = 1
bulk_1D = 1
X = range(0.0; stop = 1.0, length = n)
length_x = length(X)
length_x_half = Int(length_x / 2)
grid_1D = simplexgrid(X)
k1 = zeros(length_x)
c1 = zeros(length_x)
k1[1:length_x_half] .= kmax
k1[(length_x_half + 1):length_x] .= 0.0 # prefactor before reactive part
c1[1:length_x_half] .= 0.0
c1[(length_x_half + 1):length_x] .= cmax # source term
#### discretization functions ####
function flux!(f, u, edge, data)
f[1] = d1 * (u[1, 1] - u[1, 2])
return nothing
end
function reaction!(f, u, node, data)
f[1] = k1[node.index] * u[1]
return nothing
end
function source!(f, node::VoronoiFVM.Node, data)
f[1] = c1[node.index]
return nothing
end
sys_1D = VoronoiFVM.System(
grid_1D,
VoronoiFVM.Physics(;
flux = flux!, reaction = reaction!,
source = source!
)
)
enable species in only region
enable_species!(sys_1D, ispec_1D, [bulk_1D])
# Stationary solution of both problems
sol_1D = solve(sys_1D; inival = 0)
p = GridVisualizer(;
Plotter = Plotter, layout = (2, 1), clear = true,
resolution = (800, 500)
)
scalarplot!(
p[1, 1], grid_1D, sol_1D[1, :]; show = true,
title = "1D calculation (d1 = $d1, kmax = $kmax, cmax = $cmax)"
)
###########################################################################
###################### 2D problem ######################
###########################################################################
grid_2D = simplexgrid(X, X)
ispec_2D = 1
ispec_boundary = 2
bulk_2D = 1
active_boundary = 2
parameters for the bulk problem
d2 = 1.0
k2 = 1.0
c2 = 1.0
#### discretization functions for bulk species ####
function flux2D!(f, u, edge, data)
f[ispec_2D] = d2 * (u[ispec_2D, 1] - u[ispec_2D, 2])
return nothing
end
function reaction2D!(f, u, node, data)
f[ispec_2D] = k2 * u[ispec_2D]
return nothing
end
function source2D!(f, node, data)
f[ispec_2D] = c2
return nothing
end
#### discretization functions for boundary species at active boundary ####
function bflux!(f, u, bedge, data)
if bedge.region == active_boundary
f[ispec_boundary] = db * (u[ispec_boundary, 1] - u[ispec_boundary, 2])
end
return nothing
end
function breaction!(f, u, bnode, data)
if bnode.region == active_boundary
if bnode.coord[2, bnode.index] <= 0.5
kb = kmax
else
kb = 0.0
end
f[ispec_boundary] = kb * u[ispec_boundary]
end
return nothing
end
function bsource!(f, bnode, data)
if bnode.region == active_boundary
if bnode.coord[2, bnode.index] <= 0.5
cb = 0.0
else
cb = cmax
end
f[ispec_boundary] = cb
end
return nothing
end
sys_2D = VoronoiFVM.System(
grid_2D,
VoronoiFVM.Physics(;
flux = flux2D!, reaction = reaction2D!,
source = source2D!,
bflux = bflux!, breaction = breaction!,
bsource = bsource!
);
unknown_storage = unknown_storage, assembly = assembly
)
enable species in only region
enable_species!(sys_2D, ispec_2D, [bulk_2D])
enable_boundary_species!(sys_2D, ispec_boundary, [active_boundary])
sol_2D = solve(sys_2D; inival = 0)
this is for variable transformation, since we consider right outer boundary and want to transform to x-axis.
function tran32!(a, b)
a[1] = b[2]
return nothing
end
note that if adjusting active_boundary to 3 or 4, then transform needs to be deleted.
bgrid_2D = subgrid(grid_2D, [active_boundary]; boundary = true, transform = tran32!)
sol_bound = view(sol_2D[ispec_boundary, :], bgrid_2D)
scalarplot!(
p[2, 1], bgrid_2D, sol_bound; show = true, cellwise = true,
title = "Active boundary in 2D (db = $db, kb = $kmax, cb = $cmax)"
)
errorsol = VoronoiFVM.norm(sys_1D, sol_bound - sol_1D', 2)
return errorsol
end # main
using Test
function runtests()
@test main(; unknown_storage = :dense, assembly = :edgewise) < 1.0e-14 &&
main(; unknown_storage = :sparse, assembly = :edgewise) < 1.0e-14 &&
main(; unknown_storage = :dense, assembly = :cellwise) < 1.0e-14 &&
main(; unknown_storage = :sparse, assembly = :cellwise) < 1.0e-14
return nothing
end
end # module
This page was generated using Literate.jl.