240: 2D Convection in quadratic stagnation flow velocity field
Solve the equation
\[-\nabla \cdot ( D \nabla u - \mathbf{v} u) = 0\]
in $\Omega=(0,L)\times (0,H)$ with a homogeneous Neumann boundary condition at $x=0$, an outflow boundary condition at $x=L$, a Dirichlet inflow condition at $y=H$, and a homogeneous Dirichlet boundary condition on part of $y=0$.
The analytical expression for the (quadratic variant of the) velocity field is $\mathbf{v}(x,y)=(x^2,-2xy)$ in cartesian coordinates and (for the linear variant) $\mathbf{v}(r,z)=(r,-2z)$ in cylindrical coordinates, i.e. where the system is solved on $\Omega$ to represent a solution on the solid of revolution arising from rotating $\Omega$ around $x=0$.
We compute the solution $u$ in both coordinate systems where $\mathbf{v}$ is given as an analytical expression and as a finite element interpolation onto the grid of $\Omega$.
module Example240_FiniteElementVelocities
using Printf
using ExtendableFEMBase
using ExtendableFEM
using VoronoiFVM
using ExtendableGrids
using GridVisualize
using LinearAlgebra
function stagnation_flow_cartesian(x, y)
return (x^2, -2x * y)
end
In the cylindrical case: since the reconstruction space $\mathtt{HDIVBDM2}$ is only quadratic, but we have to reconstruct $r \, \mathbf{v}(r,z)$ for a (reconstructed) divergence-free solution, we can only resolve at most the linear case exactly.
function stagnation_flow_cylindrical(r, z)
return (r, -2 * z)
end
function inflow_cylindrical(u, qpinfo)
x = qpinfo.x
u .= stagnation_flow_cylindrical(x[1], x[2])
return nothing
end
function inflow_cartesian(u, qpinfo)
x = qpinfo.x
u .= stagnation_flow_cartesian(x[1], x[2])
return nothing
end
function flux!(f, u, edge, data)
vd = data.evelo[edge.index] / data.D
bp = fbernoulli(vd)
bm = fbernoulli(-vd)
f[1] = data.D * (bp * u[1] - bm * u[2])
return nothing
end
function bconditions!(f, u, node, data)
# catalytic Dirichlet condition at y=0
if node.region == 5
boundary_dirichlet!(f, u, node, 1, node.region, 0.0)
end
# outflow condition at x = L
if node.region == 2
f[1] = data.bfvelo[node.ibnode, node.ibface] * u[1]
end
# inflow condition at y = H
if node.region == 3
boundary_dirichlet!(f, u, node, 1, node.region, data.cin)
end
return nothing
end
mutable struct Data
D::Float64
cin::Float64
evelo::Vector{Float64}
bfvelo::Matrix{Float64}
Data() = new()
end
Calculate the analytical or FEM solution to the stagnation point flow field $\mathbf{v}$ and use this as input to solve for the species concentration $u$ of the corresponding convection-diffusion system.
The passed flags regulate the following behavior:
cylindrical_grid
: if true, calculates both the velocity field $\mathbf{v}(r,z)$ and the species concentration $u(r,z)$ in cylindrical coordinates, assuming rotationally symmetric solutions for both.usefem
: if true, calculates the velocity field $\mathbf{v}$ using the finite element method provided byExtendableFEM
.reconst
: if true, interpolates the FEM-calculated velocity field onto a "reconstruction" finite element space that provides an exactly divergence-free solution. In a cylindrical grid, this returns not $\mathbf{v}(r,z)$, but $r \, \mathbf{v}(r,z)$ as the velocity.use_different_grids
: if true, calculates the FEM solution of the velocity field on a uniformflowgrid
and the species concentration on an adaptively refinedchemgrid
while still interpolating the calculated velocity correctly onto thechemgrid
.
function main(;
cylindrical_grid = false, usefem = true, reconst = cylindrical_grid, use_different_grids = false, nref = 1,
Plotter = nothing, μ = 1.0e-2, D = 0.01, cin = 1.0, assembly = :edgewise,
interpolation_eps = 1.0e-9
)
H = 1.0
L = 5.0
if cylindrical_grid
coord_system = Cylindrical2D
else
coord_system = Cartesian2D
end
flowgrid = simplexgrid(
range(0, L; length = 20 * 2^nref),
range(0, H; length = 5 * 2^nref)
)
if use_different_grids
h_fine = 1.0e-1
X_bottom = geomspace(0.0, L / 2, 5.0e-1, h_fine)
X_cat = range(L / 2, L; step = h_fine)
chemgrid = simplexgrid(
[X_bottom; X_cat[2:end]],
geomspace(0.0, H, 1.0e-3, 1.0e-1)
)
bfacemask!(chemgrid, [L / 2, 0.0], [3 * L / 4, 0.0], 5)
else
chemgrid = deepcopy(flowgrid)
bfacemask!(chemgrid, [L / 2, 0.0], [3 * L / 4, 0.0], 5)
end
if usefem
velocity = compute_velocity(
flowgrid, cylindrical_grid, reconst, μ; interpolation_eps
)
DivIntegrator = L2NormIntegrator([div(1)]; quadorder = 2 * 2, resultdim = 1)
div_v = sqrt(sum(evaluate(DivIntegrator, [velocity])))
@info "||div(R(v))||_2 = $(div_v)"
else
if cylindrical_grid
velocity = stagnation_flow_cylindrical
else
velocity = stagnation_flow_cartesian
end
end
if cylindrical_grid
analytical_velocity = stagnation_flow_cylindrical
else
analytical_velocity = stagnation_flow_cartesian
end
# only the chemgrid needs its CoordinateSystem adjusted
# since the velocity calculation works by adjusting
# the kernels for the Stokes operator directly while
# the finite volume machinery relies upon the CoordinateSystem
# for selecting the correct geometrical factors for the
# Voronoi cell contributions
if cylindrical_grid
chemgrid[CoordinateSystem] = Cylindrical2D
end
data = Data()
data.D = D
data.cin = cin
evelo = edgevelocities(chemgrid, velocity; reconst)
bfvelo = bfacevelocities(chemgrid, velocity; reconst)
data.evelo = evelo
data.bfvelo = bfvelo
physics = VoronoiFVM.Physics(; flux = flux!, breaction = bconditions!, data)
sys = VoronoiFVM.System(chemgrid, physics; assembly)
enable_species!(sys, 1, [1])
sol = solve(sys; inival = 0.0)
fvm_divs = VoronoiFVM.calc_divergences(sys, evelo, bfvelo)
@info "||div(v)||_∞ = $(norm(fvm_divs, Inf))"
vis = GridVisualizer(; Plotter = Plotter)
scalarplot!(
vis[1, 1], chemgrid, sol[1, :]; flimits = (0, cin + 1.0e-5),
show = true
)
minmax = extrema(sol)
@info "Minimal/maximal values of concentration: $(minmax)"
return sol, evelo, bfvelo, minmax
end
using Test
function runtests()
cin = 1.0
for cylindrical_grid in [false, true]
sol_analytical, evelo_analytical, bfvelo_analytical, minmax_analytical = main(;
cylindrical_grid, cin, usefem = false
)
sol_fem, evelo_fem, bfvelo_fem, minmax_fem = main(;
cylindrical_grid, cin, usefem = true
)
@test norm(evelo_analytical .- evelo_fem, Inf) ≤ 1.0e-11
@test norm(bfvelo_analytical .- bfvelo_fem, Inf) ≤ 1.0e-9
@test norm(sol_analytical .- sol_fem, Inf) ≤ 1.0e-10
@test norm(minmax_analytical .- [0.0, cin], Inf) ≤ 1.0e-15
@test norm(minmax_fem .- [0.0, cin], Inf) ≤ 1.0e-11
end
return nothing
end
function compute_velocity(
flowgrid, cylindrical_grid, reconst, μ = 1.0e-2; interpolation_eps = 1.0e-10
)
# define finite element spaces
FE_v, FE_p = H1P2B{2, 2}, L2P1{1}
reconst_FEType = HDIVBDM2{2}
FES = [FESpace{FE_v}(flowgrid), FESpace{FE_p}(flowgrid; broken = true)]
# describe problem
Problem = ProblemDescription("incompressible Stokes problem")
v = Unknown("v"; name = "velocity")
p = Unknown("p"; name = "pressure")
assign_unknown!(Problem, v)
assign_unknown!(Problem, p)
# assign stokes operator
assign_operator!(
Problem,
BilinearOperator(
kernel_stokes!, cylindrical_grid ? [id(v), grad(v), id(p)] : [grad(v), id(p)];
bonus_quadorder = 2, store = false,
params = [μ, cylindrical_grid]
)
)
# assign Dirichlet boundary conditions on all boundary regions to
# enforce match with analytical solution
if cylindrical_grid
assign_operator!(
Problem, InterpolateBoundaryData(v, inflow_cylindrical; regions = [1, 2, 3, 4])
)
else
assign_operator!(
Problem, InterpolateBoundaryData(v, inflow_cartesian; regions = [1, 2, 3, 4])
)
end
velocity_solution = solve(Problem, FES)
# ensure divergence free solution by projecting onto reconstruction spaces
FES_reconst = FESpace{reconst_FEType}(flowgrid)
R = FEVector(FES_reconst)
if reconst
if cylindrical_grid
lazy_interpolate!(
R[1], velocity_solution, [id(v)]; postprocess = multiply_r,
bonus_quadorder = 2, eps = interpolation_eps
)
else
lazy_interpolate!(
R[1], velocity_solution, [id(v)];
bonus_quadorder = 2, eps = interpolation_eps
)
end
else
return velocity_solution[1]
end
return R[1]
end
function kernel_stokes!(result, u_ops, qpinfo)
μ = qpinfo.params[1]
cylindrical_grid = qpinfo.params[2]
if cylindrical_grid > 0
r = qpinfo.x[1]
u, ∇u, p = view(u_ops, 1:2), view(u_ops, 3:6), view(u_ops, 7)
result[1] = μ / r * u[1] - p[1]
result[2] = 0
result[3] = μ * r * ∇u[1] - r * p[1]
result[4] = μ * r * ∇u[2]
result[5] = μ * r * ∇u[3]
result[6] = μ * r * ∇u[4] - r * p[1]
result[7] = -(r * (∇u[1] + ∇u[4]) + u[1])
else
∇u, p = view(u_ops, 1:4), view(u_ops, 5)
result[1] = μ * ∇u[1] - p[1]
result[2] = μ * ∇u[2]
result[3] = μ * ∇u[3]
result[4] = μ * ∇u[4] - p[1]
result[5] = -(∇u[1] + ∇u[4])
end
return nothing
end
function multiply_r(result, input, qpinfo)
x = qpinfo.x
result .= input * x[1]
return nothing
end
end
This page was generated using Literate.jl.