311: Heat Equation with boundary diffusion
module Example311_HeatEquation_BoundaryDiffusion
using Printf
using VoronoiFVM
using ExtendableGrids
"""
We solve the following system
∂_tu - εΔu = 0 in [0,T] × Ω>
ε∇u⋅ν = k(u-v) on [0,T] × Γ_1
ε∇u⋅ν = 0 on [0,T] × (∂Ω ∖ Γ_1)
∂_tv -ε_ΓΔ_Γ v = f(x) +k(u-v) on [0,T] × Γ_1
u(0) = 0.5 in {0} × Ω
v(0) = 0.5 on {0} × Γ_1
"""
function main(n = 1; assembly = :edgewise)
breg = 5 # boundary region number for surface diffusion
hmin = 0.05 * 2.0^(-n + 1)
hmax = 0.2 * 2.0^(-n + 1)
XLeft = geomspace(0.0, 0.5, hmax, hmin)
XRight = geomspace(0.5, 1.0, hmin, hmax)
X = glue(XLeft, XRight)
Z = geomspace(0.0, 1.0, hmin, 2 * hmax)
grid = simplexgrid(X, X, Z)
parameters
eps = 1.0e0 # bulk heat conduction coefficient
eps_surf = 1.0e-2 # surface diffusion coefficient
k = 1.0 # transmission coefficient
physics = VoronoiFVM.Physics(;
flux = function (f, u, edge, data)
f[1] = eps * (u[1, 1] - u[1, 2])
return nothing
end,
bflux = function (f, u, edge, data)
if edge.region == breg
f[2] = eps_surf * (u[2, 1] - u[2, 2])
else
f[2] = 0.0
end
return nothing
end,
breaction = function (f, u, node, data)
if node.region == breg
f[1] = k * (u[1] - u[2])
f[2] = k * (u[2] - u[1])
else
f[1] = 0.0
f[2] = 0.0
end
return nothing
end,
bsource = function (f, bnode, data)
x1 = bnode[1] - 0.5
x2 = bnode[2] - 0.5
x3 = bnode[3] - 0.5
f[2] = 1.0e4 * exp(-20.0 * (x1^2 + x2^2 + x3^2))
return nothing
end, bstorage = function (f, u, node, data)
if node.region == breg
f[2] = u[2]
end
return nothing
end, storage = function (f, u, node, data)
f[1] = u[1]
return nothing
end
)
sys = VoronoiFVM.System(grid, physics; unknown_storage = :sparse, assembly)
enable_species!(sys, 1, [1])
enable_boundary_species!(sys, 2, [breg])
function tran32!(a, b)
a[1] = b[2]
return nothing
end
bgrid2 = subgrid(grid, [breg]; boundary = true, transform = tran32!)
U = unknowns(sys)
U .= 0.5
control = VoronoiFVM.NewtonControl()
control.verbose = false
control.reltol_linear = 1.0e-5
control.keepcurrent_linear = false
tstep = 0.1
time = 0.0
step = 0
T = 1.0
while time < T
time = time + tstep
U = solve(sys; inival = U, control, tstep)
tstep *= 1.0
step += 1
end
U_surf = view(U[2, :], bgrid2)
return sum(U_surf)
end
using Test
function runtests()
testval = 1509.8109057757858
testval = 1508.582565216869
@test isapprox(main(; assembly = :edgewise), testval; rtol = 1.0e-12)
@test isapprox(main(; assembly = :cellwise), testval; rtol = 1.0e-12)
return nothing
end
end
This page was generated using Literate.jl.