430: Parameter Derivatives (stationary)
Explore different ways to calculate sensitivities. This is still experimental.
module Example430_ParameterDerivativesStationary
using VoronoiFVM, ExtendableGrids
using GridVisualize
using ExtendableSparse
using ExtendableSparse: ILUZeroPreconBuilder
using ForwardDiff, DiffResults
using SparseDiffTools, SparseArrays
using ILUZero, LinearSolve
"""
f(P)
Parameter dependent function which creates system and solves it
"""
function f(P; n = 10)
p = P[1]
valuetype = typeof(p)
nspecies = 1
ispec = 1
function flux!(f, u, edge, data)
f[1] = (1 + p) * (u[1, 1]^2 - u[1, 2]^2)
return nothing
end
function r!(f, u, edge, data)
f[1] = p * u[1]^5
return nothing
end
function bc!(f, u, node, data)
boundary_dirichlet!(f, u, node, ispec, 1, 0.0)
boundary_dirichlet!(f, u, node, ispec, 3, p)
return nothing
end
X = collect(0:(1.0 / n):1)
grid = simplexgrid(X, X)
sys = VoronoiFVM.System(
grid; valuetype, species = [1], flux = flux!, reaction = r!,
bcondition = bc!
)
tff = VoronoiFVM.TestFunctionFactory(sys)
tfc = testfunction(tff, [1], [3])
sol = solve(sys; inival = 0.5)
return [integrate(sys, tfc, sol)[1]]
end
"""
runf(;Plotter, n=10)
Run parameter series, plot f(p), df(p).
For each p,create a new system. Use VoronoiFVM with dual numbers. Pass parameters via closure.
"""
function runf(; Plotter = nothing, n = 10)
P = 0.1:0.05:2
dresult = DiffResults.JacobianResult(ones(1))
F = zeros(0)
DF = zeros(0)
ff(p) = f(p; n)
@time for p in P
ForwardDiff.jacobian!(dresult, ff, [p])
push!(F, DiffResults.value(dresult)[1])
push!(DF, DiffResults.jacobian(dresult)[1])
end
vis = GridVisualizer(; Plotter, legend = :lt)
scalarplot!(vis, P, F; color = :red, label = "f")
scalarplot!(vis, P, DF; color = :blue, label = "df", clear = false, show = true)
return sum(DF)
end
function fluxg!(f, u, edge, data)
f[1] = (1 + data.p) * (u[1, 1]^2 - u[1, 2]^2)
return nothing
end
function rg!(f, u, edge, data)
f[1] = data.p * u[1]^5
return nothing
end
function bcg!(f, u, node, data)
boundary_dirichlet!(f, u, node, 1, 1, 0.0)
boundary_dirichlet!(f, u, node, 1, 3, data.p)
return nothing
end
Base.@kwdef mutable struct MyData{Tv}
p::Tv = 1.0
end
"""
rung(;Plotter, n=10)
Same as runf, but keep one system pass parameters via data.
"""
function rung(; Plotter = nothing, method_linear = SparspakFactorization(), n = 10)
X = collect(0:(1.0 / n):1)
grid = simplexgrid(X, X)
ugly but simple. By KISS we should first provide this way.
sys = nothing
data = nothing
tfc = nothing
function g(P)
Tv = eltype(P)
if isnothing(sys)
data = MyData(one(Tv))
sys = VoronoiFVM.System(
grid; valuetype = Tv, species = [1], flux = fluxg!,
reaction = rg!, bcondition = bcg!, data,
unknown_storage = :dense
)
tff = VoronoiFVM.TestFunctionFactory(sys)
tfc = testfunction(tff, [1], [3])
end
data.p = P[1]
sol = solve(sys; inival = 0.5, method_linear)
return [integrate(sys, tfc, sol)[1]]
end
dresult = DiffResults.JacobianResult(ones(1))
P = 0.1:0.05:2
G = zeros(0)
DG = zeros(0)
@time for p in P
ForwardDiff.jacobian!(dresult, g, [p])
push!(G, DiffResults.value(dresult)[1])
push!(DG, DiffResults.jacobian(dresult)[1])
end
vis = GridVisualizer(; Plotter, legend = :lt)
scalarplot!(vis, P, G; color = :red, label = "g")
scalarplot!(vis, P, DG; color = :blue, label = "dg", clear = false, show = true)
return sum(DG)
end
#########################################################################
function fluxh!(f, u, edge, data)
p = parameters(u)[1]
f[1] = (1 + p) * (u[1, 1]^2 - u[1, 2]^2)
return nothing
end
function rh!(f, u, edge, data)
p = parameters(u)[1]
f[1] = p * u[1]^5
return nothing
end
function bch!(f, u, node, data)
p = parameters(u)[1]
boundary_dirichlet!(f, u, node, 1, 1, 0.0)
boundary_dirichlet!(f, u, node, 1, 3, p)
return nothing
end
"""
runh(;Plotter, n=10)
Same as runf, but use "normal" calculation (don't solve in dual numbers), and calculate dudp during
main assembly loop.
This needs quite a bit of additional implementation + corresponding API and still lacks local assembly of the
measurement derivative (when using testfunction based calculation) when calculating current.
"""
function runh(; Plotter = nothing, n = 10)
X = collect(0:(1.0 / n):1)
grid = simplexgrid(X, X)
sys = VoronoiFVM.System(
grid; species = [1], flux = fluxh!, reaction = rh!,
bcondition = bch!, unknown_storage = :dense, nparams = 1
)
tff = VoronoiFVM.TestFunctionFactory(sys)
tfc = testfunction(tff, [1], [3])
function measp(params, u)
Tp = eltype(params)
up = Tp.(u)
return integrate(sys, tfc, up; params = params)[1]
end
params = [0.0]
function mymeas!(meas, U)
u = reshape(U, sys)
meas[1] = integrate(sys, tfc, u; params)[1]
return nothing
end
dp = 0.05
P = 0.1:dp:2
state = VoronoiFVM.SystemState(sys)
U0 = solve!(state; inival = 0.5, params = [P[1]])
ndof = num_dof(sys)
colptr = [i for i in 1:(ndof + 1)]
rowval = [1 for i in 1:ndof]
nzval = [1.0 for in in 1:ndof]
∂m∂u = zeros(1, ndof)
colors = matrix_colors(∂m∂u)
H = zeros(0)
DH = zeros(0)
DHx = zeros(0)
m = zeros(1)
@time for p in P
params[1] = p
sol = solve!(state; inival = 0.5, params)
mymeas!(m, sol)
push!(H, m[1])
this one is expensive - we would need to assemble this jacobian via local calls
forwarddiff_color_jacobian!(∂m∂u, mymeas!, vec(sol); colorvec = colors)
need to have the full derivative of m vs p
∂m∂p = ForwardDiff.gradient(p -> measp(p, sol), params)
dudp = state.matrix \ vec(state.dudp[1])
dmdp = -∂m∂u * dudp + ∂m∂p
push!(DH, dmdp[1])
end
vis = GridVisualizer(; Plotter, legend = :lt)
scalarplot!(vis, P, H; color = :red, label = "h")
scalarplot!(vis, P, DH; color = :blue, label = "dh", clear = false, show = true)
return sum(DH)
end
using Test
function runtests()
testval = 489.3432830184927
@test runf() ≈ testval
@test rung() ≈ testval
@test runh() ≈ testval
return nothing
end
end
This page was generated using Literate.jl.