begin
import Pkg as _Pkg
haskey(ENV, "PLUTO_PROJECT") && _Pkg.activate(ENV["PLUTO_PROJECT"])
using Test
using Revise
using Printf
using VoronoiFVM
using OrdinaryDiffEqBDF
using OrdinaryDiffEqRosenbrock
using OrdinaryDiffEqSDIRK
using LinearAlgebra
using PlutoUI
using DataStructures
using GridVisualize, CairoMakie
end
Solve the nonlinear diffusion equation
$$\partial_t u -\Delta u^m = 0$$
in \(\Omega=(-1,1)\) with homogeneous Neumann boundary conditions using the implicit Euler method.
This equation is also called "porous medium equation". The Barenblatt solution
$$b(x,t)=\max\left(0,t^{-\alpha}\left(1-\frac{\alpha(m-1)r^2}{2dmt^{\frac{2\alpha}{d}}}\right)^{\frac{1}{m-1}}\right)$$
is an exact solution of this problem which for m>1 has a finite support. We initialize this problem with the exact solution for \(t=t_0=0.001\).
(see Barenblatt, G. I. "On nonsteady motions of gas and fluid in porous medium." Appl. Math. and Mech.(PMM) 16.1 (1952): 67-78.)
Here, we compare the implicit Euler approach in VoronoiFVM with the ODE solvers in DifferentialEquations.jl and demonstrate the possibility to use VoronoiFVM to define differential operators compatible with its ODEFunction interface.
function barenblatt(x, t, m)
tx = t^(-1.0 / (m + 1.0))
xx = x * tx
xx = xx * xx
xx = 1 - xx * (m - 1) / (2.0 * m * (m + 1))
if xx < 0.0
xx = 0.0
end
return tx * xx^(1.0 / (m - 1.0))
end
barenblatt (generic function with 1 method)
function create_porous_medium_problem(n, m)
h = 1.0 / convert(Float64, n / 2)
X = collect(-1:h:1)
grid = VoronoiFVM.Grid(X)
function flux!(f, u, edge, data)
f[1] = u[1, 1]^m - u[1, 2]^m
return nothing
end
storage!(f, u, node, data) = f[1] = u[1]
sys = VoronoiFVM.System(grid, flux = flux!, storage = storage!, species = 1)
return sys, X
end
create_porous_medium_problem (generic function with 1 method)
begin
function run_vfvm(; n = 20, m = 2, t0 = 0.001, tend = 0.01, tstep = 1.0e-6)
sys, X = create_porous_medium_problem(n, m)
inival = unknowns(sys)
inival[1, :] .= map(x -> barenblatt(x, t0, m), X)
sol = VoronoiFVM.solve(sys; inival, times = (t0, tend), Δt = tstep, Δu_opt = 0.01, Δt_min = tstep, store_all = true, log = true, reltol = 1.0e-3)
err = norm(sol[1, :, end] - map(x -> barenblatt(x, tend, m), X))
return sol, sys, err
end
run_vfvm(m = 2, n = 10) # "Precompile"
end;
begin
function run_diffeq(; n = 20, m = 2, t0 = 0.001, tend = 0.01, solver = nothing)
sys, X = create_porous_medium_problem(n, m)
inival = unknowns(sys)
inival[1, :] .= map(x -> barenblatt(x, t0, m), X)
state = VoronoiFVM.SystemState(sys)
problem = ODEProblem(state, inival, (t0, tend))
odesol = solve(problem, solver)
sol = reshape(odesol, sys; state)
err = norm(sol[1, :, end] - map(x -> barenblatt(x, tend, m), X))
return sol, sys, err
end
for method in diffeqmethods
run_diffeq(m = 2, n = 10, solver = method.second()) # "Precompile"
end
end;
OrderedDict{String, UnionAll} with 4 entries: "Rosenbrock23 (Rosenbrock)" => Rosenbrock23 "QNDF2 (Like matlab's ode15s)" => QNDF2 "FBDF" => FBDF "Implicit Euler" => ImplicitEuler
t1 = @elapsed sol1, sys1, err1 = run_vfvm(m = m, n = n);history_summary(sol1)
(seconds = 4.0, tasm = 1.99, tlinsolve = 1.99, steps = 832, iters = 1662, maxabsnorm = 2.65e-6, maxrelnorm = 0.000263, maxroundoff = 2.46e-16, iters_per_step = 2.0, facts_per_step = 0.0, liniters_per_step = 0.0)
method:
m = 2; n = 50;
t2 = @elapsed sol2, sys2, err2 = run_diffeq(m = m, n = n, solver = diffeqmethods[method]());history_summary(sol2)
(nd = 165, njac = 82, nf = 248)
Left: VoronoiFVM implicit Euler: 4020 ms e=5.17e-02
Right: Rosenbrock23 (Rosenbrock): 170 ms, e=4.62e-02
@test err2 < err1
Test Passed
Built with Julia 1.11.2 and