begin
import Pkg as _Pkg
haskey(ENV, "PLUTO_PROJECT") && _Pkg.activate(ENV["PLUTO_PROJECT"])
using Test
using Revise
using Printf
using VoronoiFVM
using SciMLBase: NoInit
using OrdinaryDiffEqBDF
using OrdinaryDiffEqRosenbrock
using OrdinaryDiffEqSDIRK
using LinearAlgebra
using PlutoUI, HypertextLiteral, UUIDs
using DataStructures
using GridVisualize, CairoMakie
CairoMakie.activate!(type = "svg")
end
1D Nonlinear Storage
TableOfContents(aside = false)
This equation comes from the transformation of the nonlinear diffusion equation
$$\partial_t v - \Delta v^m = 0$$
to
$$\partial_t u^\frac{1}{m} -\Delta u = 0$$
in \(\Omega=(-1,1)\) with homogeneous Neumann boundary conditions. We can derive an exact solution from the Barenblatt solution of the equation for u.
function barenblatt(x, t, m)
tx = t^(-1.0 / (m + 1.0))
xx = x * tx
xx = xx * xx
xx = 1 - xx * (m - 1) / (2.0 * m * (m + 1))
if xx < 0.0
xx = 0.0
end
return tx * xx^(1.0 / (m - 1.0))
end
barenblatt (generic function with 1 method)
begin
const m = 2
const ε = 1.0e-10
const n = 50
const t0 = 1.0e-3
const tend = 1.0e-2
end
0.01
X = collect(-1:(2.0 / n):1)
51-element Vector{Float64}: -1.0 -0.96 -0.92 -0.88 -0.84 -0.8 -0.76 ⋮ 0.8 0.84 0.88 0.92 0.96 1.0
u0 = map(x -> barenblatt(x, t0, m)^m, X)
51-element Vector{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ⋮ 0.0 0.0 0.0 0.0 0.0 0.0
begin
grid = VoronoiFVM.Grid(X)
end
ExtendableGrids.ExtendableGrid{Float64, Int32} dim = 1 nnodes = 51 ncells = 50 nbfaces = 2
Direct implementation with VoronoiFVM
function flux!(f, u, edge, data)
f[1] = u[1, 1] - u[1, 2]
return nothing
end
flux! (generic function with 1 method)
Storage term needs to be regularized as its derivative at 0 is infinity:
function storage!(f, u, node, data)
f[1] = (ε + u[1])^(1.0 / m)
return nothing
end
storage! (generic function with 1 method)
begin
physics = VoronoiFVM.Physics(
flux = flux!,
storage = storage!
)
sys = VoronoiFVM.System(grid, physics, species = 1)
inival = unknowns(sys)
inival[1, :] = u0
control = VoronoiFVM.SolverControl()
tsol = VoronoiFVM.solve(sys; inival, times = (t0, tend), Δt_min = 1.0e-4, Δt = 1.0e-4, Δu_opt = 0.1, force_first_step = true, log = true)
summary(tsol.history)
end
(seconds = 1.98, tasm = 1.6, tlinsolve = 0.368, steps = 731, iters = 2920, maxabsnorm = 1.73e-12, maxrelnorm = 1.75e-11, maxroundoff = 9.06e-15, iters_per_step = 4.0, facts_per_step = 0.0, liniters_per_step = 0.0)
Implementation as DAE
If we want to solve the problem with DifferentialEquations.jl solvers, we see that the problem structure does not fit into the setting of that package due to the nonlinearity under the time derivative. Here we propose a reformulation to a DAE as a way to achieve this possibility:
$$\begin{cases} \partial_t w -\Delta u &= 0\\ w^m - u &=0 \end{cases}$$
function dae_storage!(y, u, node, data)
y[1] = u[2]
return nothing
end
dae_storage! (generic function with 1 method)
function dae_reaction!(y, u, node, data)
y[2] = u[2]^m - u[1]
return nothing
end
dae_reaction! (generic function with 1 method)
First, we test this with the implicit Euler method of VoronoiFVM
begin
dae_physics = VoronoiFVM.Physics(
flux = flux!,
storage = dae_storage!,
reaction = dae_reaction!
)
dae_sys = VoronoiFVM.System(grid, dae_physics, species = [1, 2])
dae_inival = unknowns(dae_sys)
dae_inival[1, :] .= u0
dae_inival[2, :] .= u0 .^ (1 / m)
dae_control = VoronoiFVM.SolverControl()
dae_tsol = VoronoiFVM.solve(dae_sys; inival = dae_inival, times = (t0, tend), Δt_min = 1.0e-4, Δt = 1.0e-4, Δu_opt = 0.1, force_first_step = true, log = true)
summary(dae_tsol.history)
end
(seconds = 1.33, tasm = 1.1, tlinsolve = 0.221, steps = 732, iters = 2205, maxabsnorm = 9.72e-11, maxrelnorm = 9.82e-10, maxroundoff = 6.99e-13, iters_per_step = 3.02, facts_per_step = 0.0, liniters_per_step = 0.0)
Implementation via OrdinaryDiffEq.jl
OrderedDict{String, UnionAll} with 5 entries: "QNDF2 (Like matlab's ode15s)" => QNDF2 "Rodas5" => Rodas5 "Rosenbrock23 (Rosenbrock)" => Rosenbrock23 "FBDF" => FBDF "Implicit Euler" => ImplicitEuler
method:
begin
de_sys = VoronoiFVM.System(grid, dae_physics, species = [1, 2])
problem = ODEProblem(de_sys, dae_inival, (t0, tend))
de_odesol = solve(
problem,
diffeqmethods[method](),
adaptive = true,
reltol = 1.0e-3,
abstol = 1.0e-3,
initializealg = NoInit()
)
de_tsol = reshape(de_odesol, de_sys)
end;
t=
exact = map(x -> barenblatt(x, tend, m) .^ m, X)
51-element Vector{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ⋮ 0.0 0.0 0.0 0.0 0.0 0.0
@test norm(tsol[1, :, end] - exact, Inf) < 0.1
Test Passed
@test norm(dae_tsol[1, :, end] - exact, Inf) < 0.1
Test Passed
@test norm(de_tsol[1, :, end] - exact, Inf) < 0.05
Test Passed
myaside (generic function with 1 method)
function plotsolutions()
vis = GridVisualizer(resolution = (380, 200), dim = 1, Plotter = CairoMakie, legend = :lt)
u = tsol(t)
u_dae = dae_tsol(t)
u_de = de_tsol(t)
scalarplot!(vis, X, map(x -> barenblatt(x, t, m) .^ m, X), clear = true, color = :red, linestyle = :solid, flimits = (0, 100), label = "exact")
scalarplot!(vis, grid, u_dae[1, :], clear = false, color = :green, linestyle = :solid, label = "vfvm_dae")
scalarplot!(vis, grid, u_de[1, :], clear = false, color = :blue, markershape = :cross, linestyle = :dot, label = "vfvm_diffeq")
scalarplot!(vis, grid, u[1, :], clear = false, color = :black, markershape = :none, linestyle = :dash, title = "t=$(t)", label = "vfvm_default")
return reveal(vis)
end
plotsolutions (generic function with 1 method)
Built with Julia 1.11.2 and