begin
import Pkg as _Pkg
haskey(ENV, "PLUTO_PROJECT") && _Pkg.activate(ENV["PLUTO_PROJECT"])
using Test
using Revise
using Printf
using VoronoiFVM
using OrdinaryDiffEqBDF
using OrdinaryDiffEqRosenbrock
using OrdinaryDiffEqSDIRK
using LinearAlgebra
using PlutoUI
using ExtendableGrids
using DataStructures
using GridVisualize, CairoMakie
CairoMakie.activate!(type = "png")
end
The wave equation as system of equations
This is the n-dimensional wave equation:
$$u_{tt}- c^2 \Delta u = 0$$
We can create a system of first order in time PDEs out of this:
$$ \begin{aligned} u_t - v&=0\\ v_t -c^2\Delta u&=0 \end{aligned}$$
This allows for a quick implementation in VoronoiFVM (which may be not the optimal way, in particular with respect to time discretization).
const iu = 1; const iv = 2;
storage(y, u, node, data) = y .= u;
reaction(y, u, node, data) = y[iu] = -u[iv];
flux(y, u, edge, data) = y[iv] = data.c^2 * (u[iu, 1] - u[iu, 2]);
Implementation of transparent or mirror bc
function brea(y, u, node, data)
if node.region == 2
if data.bctype == :transparent
y[iu] = data.c * u[iu]
elseif data.bctype == :mirror
boundary_dirichlet!(y, u, node, species = 1, region = 2, value = 0)
end
end
return nothing
end;
Wave velocity:
const c = 0.1
0.1
Domain length:
L = 4
4
N = 151
151
dt = 1.0e-2; tend = 100.0;
grid = simplexgrid(range(-L, L, length = N));
sys = VoronoiFVM.System(grid, storage = storage, flux = flux, breaction = brea, reaction = reaction, data = (c = c, bctype = Symbol(bc2type)), species = [1, 2])
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}( grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=1, nnodes=151, ncells=150, nbfaces=2), physics = Physics(data=@NamedTuple{c::Float64, bctype::Symbol}, flux=flux, storage=storage, reaction=reaction, breaction=brea, ), num_species = 2)
Perturbation in the center of the domain:
begin
inival = unknowns(sys, inival = 0)
inival[1, :] .= map(x -> cos(κ * π * x) * exp(-x^2 / 0.1), grid)
end;
problem = ODEProblem(sys, inival, (0.0, tend));
tsol = solve(
problem, diffeqmethods[method]();
force_dtmin = true,
adaptive = true,
reltol = 1.0e-4,
abstol = 1.0e-5,
dtmin = dt,
progress = true,
progress_steps = 1,
dt = dt
);
Boundary condition at x=L:
Reflection (Neumann) bc \(\partial_x u|_{x=L}=0\)
Package wave number κ:
t=
let
u = tsol1(t)
scalarplot(grid, u[1, :], flimits = (-1, 1), clear = true, show = true, title = "t=$(t)", Plotter = CairoMakie, resolution = (600, 150))
end
let
vis = GridVisualizer(Plotter = CairoMakie)
scalarplot!(vis, sys, tsol1, colormap = :bwr, limits = (-1, 1), levels = (-0.9:0.2:0.9))
reveal(vis)
end
tsol1 = reshape(tsol, sys);
diffeqmethods = OrderedDict(
"QNDF2" => QNDF2,
"FBDF" => FBDF,
"Rosenbrock23 (Rosenbrock)" => Rosenbrock23,
"Implicit Euler" => ImplicitEuler,
"Implicit Midpoint" => ImplicitMidpoint,
)
OrderedDict{String, UnionAll} with 5 entries: "QNDF2" => QNDF2 "FBDF" => FBDF "Rosenbrock23 (Rosenbrock)" => Rosenbrock23 "Implicit Euler" => ImplicitEuler "Implicit Midpoint" => ImplicitMidpoint
Built with Julia 1.11.2 and