begin
import Pkg as _Pkg
haskey(ENV, "PLUTO_PROJECT") && _Pkg.activate(ENV["PLUTO_PROJECT"])
using Test
using Revise
using Printf
using VoronoiFVM
using OrdinaryDiffEqBDF
using OrdinaryDiffEqRosenbrock
using OrdinaryDiffEqSDIRK
using LinearAlgebra
using PlutoUI
using ExtendableGrids
using DataStructures
using GridVisualize,CairoMakie
CairoMakie.activate!(type="png")
end
The wave equation as system of equations
This is the n-dimensional wave equation:
$$u_{tt}- c^2 \Delta u = 0$$
We can create a system of first oder in time PDEs out of this:
$$ \begin{aligned} u_t - v&=0\\ v_t -c^2\Delta u&=0 \end{aligned}$$
This allows for a quick implementation in VoronoiFVM (which may be not the optimal way, in particular with respect to time discretization).
const iu=1; const iv=2;
storage(y,u,node,data)=y.=u;
reaction(y,u,node,data)= y[iu]=-u[iv];
flux(y,u,edge,data)=y[iv]=data.c^2*(u[iu,1]-u[iu,2]);
Implementation of transparent or mirror bc
function brea(y,u,node,data)
if node.region==2
if data.bctype==:transparent
y[iu]=data.c*u[iu]
elseif data.bctype==:mirror
boundary_dirichlet!(y,u,node,species=1,region=2,value=0)
end
end
end;
Wave velocity:
const c=0.1
0.1
Domain length:
L=4
4
N=151
151
dt=1.0e-2; tend=100.0;
grid=simplexgrid(range(-L,L,length=N));
sys=VoronoiFVM.System(grid,storage=storage,flux=flux,breaction=brea, reaction=reaction,data=(c=c,bctype=Symbol(bc2type)), species=[1,2])
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}( grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=1, nnodes=151, ncells=150, nbfaces=2), physics = Physics(data=@NamedTuple{c::Float64, bctype::Symbol}, flux=flux, storage=storage, reaction=reaction, breaction=brea, ), num_species = 2)
Perturbation in the center of the domain:
begin
inival=unknowns(sys,inival=0)
inival[1,:].=map(x->cos(κ*π*x)*exp(-x^2/0.1) ,grid)
end;
problem = ODEProblem(sys,inival,(0.0,tend));
tsol=solve(problem,diffeqmethods[method]();
force_dtmin=true,
adaptive=true,
reltol=1.0e-4,
abstol=1.0e-5,
dtmin=dt,
progress=true,
progress_steps=1,
dt=dt);
Boundary condition at x=L:
Reflection (Neumann) bc \(\partial_x u|_{x=L}=0\)
Package wave number κ:
t=
let
u=tsol1(t)
scalarplot(grid,u[1,:],flimits=(-1,1),clear=true,show=true,title="t=$(t)",Plotter=CairoMakie,resolution=(600,150))
end
let
vis=GridVisualizer(Plotter=CairoMakie)
scalarplot!(vis,sys,tsol1,colormap=:bwr,limits=(-1,1), levels=(-0.9:0.2:0.9))
reveal(vis)
end
tsol1=reshape(tsol,sys);
diffeqmethods=OrderedDict(
"QNDF2" => QNDF2,
"FBDF" => FBDF,
"Rosenbrock23 (Rosenbrock)" => Rosenbrock23,
"Implicit Euler" => ImplicitEuler,
"Implicit Midpoint" => ImplicitMidpoint,
)
OrderedDict{String, UnionAll} with 5 entries: "QNDF2" => QNDF2 "FBDF" => FBDF "Rosenbrock23 (Rosenbrock)" => Rosenbrock23 "Implicit Euler" => ImplicitEuler "Implicit Midpoint" => ImplicitMidpoint
Built with Julia 1.11.1 and