begin
import Pkg as _Pkg
haskey(ENV, "PLUTO_PROJECT") && _Pkg.activate(ENV["PLUTO_PROJECT"])
using Revise
using Test
using VoronoiFVM
using GridVisualize
using CairoMakie
CairoMakie.activate!(; type = "png", visible = false)
GridVisualize.default_plotter!(CairoMakie)
using SimplexGridFactory, Triangulate
using ExtendableGrids
using PlutoUI, HypertextLiteral, UUIDs
end
Outflow boundary conditions
We show how to implement outflow boundary conditions when the velocities at the boundary are calculated by another equation in the system. A typical case is solute transport in porous media where fluid flow is calculated by Darcy's law which defines the convective velocity in the solute transport equation.
Regard the following system of equations in domain \(\Omega\subset \mathbb R^d\):
$$\begin{aligned} \nabla \cdot \vec v &=0\\ \vec v&=-k\nabla p\\ \nabla \cdot \vec j &=0\\ \vec j&= - D\nabla c - c\vec v \end{aligned}$$
The variable p
can be seen as a the pressure of a fluid in porous medium. c
is the concentration of a transported species.
We subdivide the boundary: \(\partial\Omega=Γ_{in}\cup Γ_{out}\cup Γ_{noflow}\) abs set
$$\begin{aligned} p=&1 \quad & c&=c_{in} & \text{on}\quad Γ_{in}\\ p=&0 \quad & \vec j\cdot \vec n &= c\vec v \cdot \vec n & \text{on}\quad Γ_{out}\\ \vec v\cdot \vec n &=0 \quad & \vec j\cdot \vec n &= 0 & \text{on}\quad Γ_{noflow}\\ \end{aligned}$$
Discretization data
Base.@kwdef struct FlowTransportData
k = 1.0
v_in = 1.0
c_in = 0.5
D = 1.0
Γ_in = 1
Γ_out = 2
ip = 1
ic = 2
end
FlowTransportData
X = 0:0.1:1
0.0:0.1:1.0
darcyvelo(u, data) = data.k * (u[data.ip, 1] - u[data.ip, 2])
darcyvelo (generic function with 1 method)
function flux(y, u, edge, data)
vh = darcyvelo(u, data)
y[data.ip] = vh
bp, bm = fbernoulli_pm(vh / data.D)
y[data.ic] = data.D * (bm * u[data.ic, 1] - bp * u[data.ic, 2])
return nothing
end
flux (generic function with 1 method)
function bcondition(y, u, bnode, data)
boundary_neumann!(y, u, bnode; species = data.ip, region = data.Γ_in, value = data.v_in)
boundary_dirichlet!(y, u, bnode; species = data.ip, region = data.Γ_out, value = 0)
boundary_dirichlet!(y, u, bnode; species = data.ic, region = data.Γ_in, value = data.c_in)
return nothing
end
bcondition (generic function with 1 method)
This function describes the outflow boundary condition. It is called on edges (including interior ones) which have at least one ode on one of the outflow boundaries. Within this function outflownode
can be used to identify that node. There is some ambiguity in the case that both nodes are outflow nodes, in that case it is assumed that the contribution is zero. In the present case this is guaranteed by the constant Dirichlet boundary condition for the pressure.
function boutflow(y, u, edge, data)
y[data.ic] = -darcyvelo(u, data) * u[data.ic, outflownode(edge)]
return nothing
end
boutflow (generic function with 1 method)
function flowtransportsystem(grid; kwargs...)
data = FlowTransportData(; kwargs...)
return VoronoiFVM.System(
grid;
flux,
bcondition,
boutflow,
data,
outflowboundaries = [data.Γ_out],
species = [1, 2],
)
end
flowtransportsystem (generic function with 1 method)
function checkinout(sys, sol)
data = sys.physics.data
tfact = TestFunctionFactory(sys)
tf_in = testfunction(tfact, [data.Γ_out], [data.Γ_in])
tf_out = testfunction(tfact, [data.Γ_in], [data.Γ_out])
return (; in = integrate(sys, tf_in, sol), out = integrate(sys, tf_out, sol))
end
checkinout (generic function with 1 method)
1D Case
grid = simplexgrid(X)
ExtendableGrids.ExtendableGrid{Float64, Int32} dim = 1 nnodes = 11 ncells = 10 nbfaces = 2
sys1 = flowtransportsystem(grid);
sol1 = solve(sys1; verbose = "n");
t1 = checkinout(sys1, sol1)
(in = [1.0, 0.5000000000000003], out = [-1.0, -0.5000000000000003])
@test t1.in ≈ -t1.out
Test Passed
@test maximum(sol1[2, :]) ≈ 0.5
Test Passed
@test minimum(sol1[2, :]) ≈ 0.5
Test Passed
2D Case
begin
g2 = simplexgrid(X, X)
bfacemask!(g2, [1, 0.3], [1, 0.7], 5)
end
ExtendableGrids.ExtendableGrid{Float64, Int32} dim = 2 nnodes = 121 ncells = 200 nbfaces = 40
gridplot(g2; size = (300, 300))
sys2 = flowtransportsystem(g2; Γ_in = 4, Γ_out = 5);
sol2 = solve(sys2; verbose = "n")
2×121 VoronoiFVM.DenseSolutionArray{Float64, 2}: 1.12521 1.02537 0.925877 0.826948 … 0.453027 0.377299 0.321519 0.298904 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
let
vis = GridVisualizer(; size = (700, 300), layout = (1, 2))
scalarplot!(vis[1, 1], g2, sol2[1, :])
scalarplot!(vis[1, 2], g2, sol2[2, :]; limits = (0, 1))
reveal(vis)
end
t2 = checkinout(sys2, sol2)
(in = [1.0000000000000013, 0.5000000000000004], out = [-1.0000000000000007, -0.5000000000000001])
@test t2.in ≈ -t2.out
Test Passed
@test maximum(sol2[2, :]) ≈ 0.5
Test Passed
@test minimum(sol2[2, :]) ≈ 0.5
Test Passed
3D Case
begin
g3 = simplexgrid(X, X, X)
bfacemask!(g3, [0.3, 0.3, 0], [0.7, 0.7, 0], 7)
end
ExtendableGrids.ExtendableGrid{Float64, Int32} dim = 3 nnodes = 1331 ncells = 6000 nbfaces = 1200
gridplot(g3; size = (300, 300))
sys3 = flowtransportsystem(g3; Γ_in = 6, Γ_out = 7);
sol3 = solve(sys3; verbose = "n")
2×1331 VoronoiFVM.DenseSolutionArray{Float64, 2}: 0.547438 0.539229 0.516946 0.488884 … 1.32867 1.32914 1.32951 1.32966 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
let
vis = GridVisualizer(; size = (700, 300), layout = (1, 2))
scalarplot!(vis[1, 1], g3, sol3[1, :])
scalarplot!(vis[1, 2], g3, sol3[2, :]; limits = (0, 1))
reveal(vis)
end
t3 = checkinout(sys3, sol3)
(in = [1.0000000000000369, 0.5000000000000185], out = [-1.000000000000039, -0.5000000000000194])
@test t3.in ≈ -t3.out
Test Passed
@test maximum(sol3[2, :]) ≈ 0.5
Test Passed
@test minimum(sol3[2, :]) ≈ 0.5
Test Passed
Built with Julia 1.11.2 and
CairoMakie 0.12.18ExtendableGrids 1.9.2
GridVisualize 1.7.0
HypertextLiteral 0.9.5
Pkg 1.11.0
PlutoUI 0.7.60
Revise 3.5.18
SimplexGridFactory 2.2.1
Test 1.11.0
Triangulate 2.3.4
UUIDs 1.11.0
VoronoiFVM 1.25.1